Cost analysis of prostate cancer detection including the prostate health index (phi) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-06

AUTHORS

Romain Mathieu, Christel Castelli, Tarek Fardoun, Benoit Peyronnet, Shahrokh F. Shariat, Karim Bensalah, Sébastien Vincendeau

ABSTRACT

ObjectiveTo assess the economic impact of introducing the prostate health index (phi) for prostate cancer (PCa) detection.MethodsA total of 177 patients who presented in an academic institution with a tPSA between 2 and 10 ng/ml and underwent prostate biopsies within the 3 months were enrolled. With phi and tPSA thresholds of 43 and 4 ng/ml, respectively, probability for each branch of a decision tree model for PCa diagnosis and corresponding mean cost were estimated with “Monte Carlo” simulations. A sensitivity analysis was performed.ResultsWith a similar sensitivity, phi strategy increased positive predictive value by 13.9 points and negative predictive value by 31.6 points in comparison to tPSA strategy. Mean costs per patient with tPSA and phi strategies were €514 and €528, respectively, for a phi test price at 50€. One-way sensitivity analysis showed that phi strategy was less expensive (508€/patient) than tPSA strategy with a phi test price below 30€. In multi-criteria sensitivity analysis, PPV and the rates of positive phi and tPSA were the parameters with the largest impact on the final cost as opposed to the cost of the biopsy or imaging which have less influence. With an expected rate of positive phi test < 60%, tPSA strategy was more expensive than phi strategy.ConclusionsThe introduction of phi index in PCa detection would result in a significant clinical benefit compared to tPSA strategy. In our economic model, the phi strategy was equivalent or slightly more expensive than the current tPSA strategy. More... »

PAGES

481-487

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z

DOI

http://dx.doi.org/10.1007/s00345-018-2362-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105335171

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29980838


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Costs and Cost Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Detection of Cancer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Care Costs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kallikreins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostate-Specific Antigen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Precursors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathieu", 
        "givenName": "Romain", 
        "id": "sg:person.01354643744.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354643744.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BESPIM Department, Nimes University Hospital, Nimes, France", 
          "id": "http://www.grid.ac/institutes/grid.411165.6", 
          "name": [
            "BESPIM Department, Nimes University Hospital, Nimes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castelli", 
        "givenName": "Christel", 
        "id": "sg:person.01041740434.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041740434.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fardoun", 
        "givenName": "Tarek", 
        "id": "sg:person.01035604211.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035604211.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peyronnet", 
        "givenName": "Benoit", 
        "id": "sg:person.0705654524.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705654524.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karl Landsteiner Institute, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.487248.5", 
          "name": [
            "Department of Urology, General Hospital, Medical University Vienna, Vienna, Austria", 
            "Department of Urology, University of Texas, Southwestern Medical Center, Dallas, TX, USA", 
            "Department of Urology, Weill Cornell Medical College, New York, NY, USA", 
            "Karl Landsteiner Institute, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shariat", 
        "givenName": "Shahrokh F.", 
        "id": "sg:person.01260166612.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260166612.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bensalah", 
        "givenName": "Karim", 
        "id": "sg:person.01070707443.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070707443.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vincendeau", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.0576606402.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576606402.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/pcan.2011.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000353220", 
          "https://doi.org/10.1038/pcan.2011.16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep35364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048447313", 
          "https://doi.org/10.1038/srep35364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00345-015-1643-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001077850", 
          "https://doi.org/10.1007/s00345-015-1643-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-06", 
    "datePublishedReg": "2018-07-06", 
    "description": "ObjectiveTo assess the economic impact of introducing the prostate health index (phi) for prostate cancer (PCa) detection.MethodsA total of 177 patients who presented in an academic institution with a tPSA between 2 and 10\u00a0ng/ml and underwent prostate biopsies within the 3\u00a0months were enrolled. With phi and tPSA thresholds of 43 and 4\u00a0ng/ml, respectively, probability for each branch of a decision tree model for PCa diagnosis and corresponding mean cost were estimated with \u201cMonte Carlo\u201d simulations. A sensitivity analysis was performed.ResultsWith a similar sensitivity, phi strategy increased positive predictive value by 13.9 points and negative predictive value by 31.6 points in comparison to tPSA strategy. Mean costs per patient with tPSA and phi strategies were \u20ac514 and \u20ac528, respectively, for a phi test price at 50\u20ac. One-way sensitivity analysis showed that phi strategy was less expensive (508\u20ac/patient) than tPSA strategy with a phi test price below 30\u20ac. In multi-criteria sensitivity analysis, PPV and the rates of positive phi and tPSA were the parameters with the largest impact on the final cost as opposed to the cost of the biopsy or imaging which have less influence. With an expected rate of positive phi test <\u200960%, tPSA strategy was more expensive than phi strategy.ConclusionsThe introduction of phi index in PCa detection would result in a significant clinical benefit compared to tPSA strategy. In our economic model, the phi strategy was equivalent or slightly more expensive than the current tPSA strategy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00345-018-2362-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094127", 
        "issn": [
          "0724-4983", 
          "1433-8726"
        ], 
        "name": "World Journal of Urology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "PHI strategy", 
      "test price", 
      "One-way sensitivity analyses", 
      "sensitivity analysis", 
      "economic model", 
      "economic impact", 
      "Prostate Health Index", 
      "positive phi", 
      "decision tree model", 
      "prices", 
      "prostate cancer detection", 
      "cost analysis", 
      "large impact", 
      "cost", 
      "predictive value", 
      "phi index", 
      "mean cost", 
      "phi test", 
      "underwent prostate biopsy", 
      "final cost", 
      "significant clinical benefit", 
      "negative predictive value", 
      "positive predictive value", 
      "health index", 
      "cancer detection", 
      "clinical benefit", 
      "prostate biopsy", 
      "tree model", 
      "impact", 
      "PCa diagnosis", 
      "PCa detection", 
      "ConclusionsThe introduction", 
      "tPSA", 
      "patients", 
      "institutions", 
      "biopsy", 
      "model", 
      "strategies", 
      "index", 
      "similar sensitivity", 
      "benefits", 
      "less influence", 
      "Monte Carlo", 
      "analysis", 
      "probability", 
      "ObjectiveTo", 
      "diagnosis", 
      "months", 
      "values", 
      "rate", 
      "ResultsWith", 
      "total", 
      "phi", 
      "academic institutions", 
      "PPV", 
      "introduction", 
      "imaging", 
      "point", 
      "detection", 
      "Carlo", 
      "sensitivity", 
      "test", 
      "influence", 
      "comparison", 
      "branches", 
      "simulations", 
      "parameters", 
      "corresponding mean cost", 
      "tPSA strategy", 
      "phi test price", 
      "multi-criteria sensitivity analysis", 
      "positive phi test", 
      "current tPSA strategy"
    ], 
    "name": "Cost analysis of prostate cancer detection including the prostate health index (phi)", 
    "pagination": "481-487", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105335171"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00345-018-2362-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29980838"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00345-018-2362-z", 
      "https://app.dimensions.ai/details/publication/pub.1105335171"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_774.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00345-018-2362-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      22 PREDICATES      119 URIs      108 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00345-018-2362-z schema:about N01d34e190b3f45d28bbbbe51d2656bc9
2 N0abeafe87719445abce38bac2f52d164
3 N0bed0488702d484c8d2d6603bee9682d
4 N1ed3d478b727436f9ccf9fa2257fd7e8
5 N4c9730b9648643e297224d5994fb211d
6 N4f1079700e8f4e8184532fdd2f6b30cb
7 N5043db46ea85404b8293edd43c65cbe9
8 N5a27252a3db44bfcba67e0f320f6e194
9 N70e7826558d246398e38efd84314696a
10 N79e8587d9c8e4042922e4f0ba9ed7c80
11 N89a3514e85d3462097fbe113a76bbf40
12 N95728af4a1354981860cd708a7b18cda
13 N9d9d01d248fe49beb435786e0661b124
14 Nb21c266f2e9f489fb8de64213db57f09
15 Nc5cf7e59bb074595bbbb154d79110745
16 Ne262ec5af5bd47dab2f666965160f579
17 Neb13ba3ca7db4ae5895055d78f1727ed
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author Nc8bce977d811475da62b5c9d20934fea
21 schema:citation sg:pub.10.1007/s00345-015-1643-z
22 sg:pub.10.1038/pcan.2011.16
23 sg:pub.10.1038/srep35364
24 schema:datePublished 2018-07-06
25 schema:datePublishedReg 2018-07-06
26 schema:description ObjectiveTo assess the economic impact of introducing the prostate health index (phi) for prostate cancer (PCa) detection.MethodsA total of 177 patients who presented in an academic institution with a tPSA between 2 and 10 ng/ml and underwent prostate biopsies within the 3 months were enrolled. With phi and tPSA thresholds of 43 and 4 ng/ml, respectively, probability for each branch of a decision tree model for PCa diagnosis and corresponding mean cost were estimated with “Monte Carlo” simulations. A sensitivity analysis was performed.ResultsWith a similar sensitivity, phi strategy increased positive predictive value by 13.9 points and negative predictive value by 31.6 points in comparison to tPSA strategy. Mean costs per patient with tPSA and phi strategies were €514 and €528, respectively, for a phi test price at 50€. One-way sensitivity analysis showed that phi strategy was less expensive (508€/patient) than tPSA strategy with a phi test price below 30€. In multi-criteria sensitivity analysis, PPV and the rates of positive phi and tPSA were the parameters with the largest impact on the final cost as opposed to the cost of the biopsy or imaging which have less influence. With an expected rate of positive phi test < 60%, tPSA strategy was more expensive than phi strategy.ConclusionsThe introduction of phi index in PCa detection would result in a significant clinical benefit compared to tPSA strategy. In our economic model, the phi strategy was equivalent or slightly more expensive than the current tPSA strategy.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N92aa531873574f3ba16f3f2a572595cf
31 Ncc9e5d7cbb66439bac555d6408f48f6e
32 sg:journal.1094127
33 schema:keywords Carlo
34 ConclusionsThe introduction
35 Monte Carlo
36 ObjectiveTo
37 One-way sensitivity analyses
38 PCa detection
39 PCa diagnosis
40 PHI strategy
41 PPV
42 Prostate Health Index
43 ResultsWith
44 academic institutions
45 analysis
46 benefits
47 biopsy
48 branches
49 cancer detection
50 clinical benefit
51 comparison
52 corresponding mean cost
53 cost
54 cost analysis
55 current tPSA strategy
56 decision tree model
57 detection
58 diagnosis
59 economic impact
60 economic model
61 final cost
62 health index
63 imaging
64 impact
65 index
66 influence
67 institutions
68 introduction
69 large impact
70 less influence
71 mean cost
72 model
73 months
74 multi-criteria sensitivity analysis
75 negative predictive value
76 parameters
77 patients
78 phi
79 phi index
80 phi test
81 phi test price
82 point
83 positive phi
84 positive phi test
85 positive predictive value
86 predictive value
87 prices
88 probability
89 prostate biopsy
90 prostate cancer detection
91 rate
92 sensitivity
93 sensitivity analysis
94 significant clinical benefit
95 similar sensitivity
96 simulations
97 strategies
98 tPSA
99 tPSA strategy
100 test
101 test price
102 total
103 tree model
104 underwent prostate biopsy
105 values
106 schema:name Cost analysis of prostate cancer detection including the prostate health index (phi)
107 schema:pagination 481-487
108 schema:productId N3231a494bb874b0082cd82f956ee5833
109 N6c984834596846e9924fd8ec28244037
110 Nba895343126c45c5a6d3769ddf724d07
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105335171
112 https://doi.org/10.1007/s00345-018-2362-z
113 schema:sdDatePublished 2021-12-01T19:42
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Nd83482ff3d9741fc95fcba25bbd62c59
116 schema:url https://doi.org/10.1007/s00345-018-2362-z
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N01d34e190b3f45d28bbbbe51d2656bc9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Predictive Value of Tests
122 rdf:type schema:DefinedTerm
123 N03f7359506154e399cdb987fb2c4476f rdf:first sg:person.0705654524.55
124 rdf:rest Nb31abfd24be246bf978e2c929a70a261
125 N0abeafe87719445abce38bac2f52d164 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Kallikreins
127 rdf:type schema:DefinedTerm
128 N0bed0488702d484c8d2d6603bee9682d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Middle Aged
130 rdf:type schema:DefinedTerm
131 N1ebb402834d54626933fe0933ddef34a rdf:first sg:person.0576606402.75
132 rdf:rest rdf:nil
133 N1ed3d478b727436f9ccf9fa2257fd7e8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Quality-Adjusted Life Years
135 rdf:type schema:DefinedTerm
136 N3231a494bb874b0082cd82f956ee5833 schema:name pubmed_id
137 schema:value 29980838
138 rdf:type schema:PropertyValue
139 N4c9730b9648643e297224d5994fb211d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Humans
141 rdf:type schema:DefinedTerm
142 N4f1079700e8f4e8184532fdd2f6b30cb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Aged
144 rdf:type schema:DefinedTerm
145 N5043db46ea85404b8293edd43c65cbe9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Monte Carlo Method
147 rdf:type schema:DefinedTerm
148 N5a27252a3db44bfcba67e0f320f6e194 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Male
150 rdf:type schema:DefinedTerm
151 N6c984834596846e9924fd8ec28244037 schema:name dimensions_id
152 schema:value pub.1105335171
153 rdf:type schema:PropertyValue
154 N70e7826558d246398e38efd84314696a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
155 schema:name Prostate-Specific Antigen
156 rdf:type schema:DefinedTerm
157 N79e8587d9c8e4042922e4f0ba9ed7c80 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Costs and Cost Analysis
159 rdf:type schema:DefinedTerm
160 N7dc3d011435e4e9b811148d07e0cafc5 rdf:first sg:person.01035604211.06
161 rdf:rest N03f7359506154e399cdb987fb2c4476f
162 N835c07351fdf494d90f66a71e2e04855 rdf:first sg:person.01070707443.14
163 rdf:rest N1ebb402834d54626933fe0933ddef34a
164 N89a3514e85d3462097fbe113a76bbf40 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Biopsy
166 rdf:type schema:DefinedTerm
167 N92aa531873574f3ba16f3f2a572595cf schema:volumeNumber 37
168 rdf:type schema:PublicationVolume
169 N95728af4a1354981860cd708a7b18cda schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Early Detection of Cancer
171 rdf:type schema:DefinedTerm
172 N9d9d01d248fe49beb435786e0661b124 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Protein Precursors
174 rdf:type schema:DefinedTerm
175 Na0201b554c22477abb8e100b43de2443 rdf:first sg:person.01041740434.07
176 rdf:rest N7dc3d011435e4e9b811148d07e0cafc5
177 Nb21c266f2e9f489fb8de64213db57f09 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Decision Trees
179 rdf:type schema:DefinedTerm
180 Nb31abfd24be246bf978e2c929a70a261 rdf:first sg:person.01260166612.12
181 rdf:rest N835c07351fdf494d90f66a71e2e04855
182 Nba895343126c45c5a6d3769ddf724d07 schema:name doi
183 schema:value 10.1007/s00345-018-2362-z
184 rdf:type schema:PropertyValue
185 Nc5cf7e59bb074595bbbb154d79110745 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Prostatic Neoplasms
187 rdf:type schema:DefinedTerm
188 Nc8bce977d811475da62b5c9d20934fea rdf:first sg:person.01354643744.48
189 rdf:rest Na0201b554c22477abb8e100b43de2443
190 Ncc9e5d7cbb66439bac555d6408f48f6e schema:issueNumber 3
191 rdf:type schema:PublicationIssue
192 Nd83482ff3d9741fc95fcba25bbd62c59 schema:name Springer Nature - SN SciGraph project
193 rdf:type schema:Organization
194 Ne262ec5af5bd47dab2f666965160f579 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
195 schema:name France
196 rdf:type schema:DefinedTerm
197 Neb13ba3ca7db4ae5895055d78f1727ed schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Health Care Costs
199 rdf:type schema:DefinedTerm
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
204 schema:name Clinical Sciences
205 rdf:type schema:DefinedTerm
206 sg:journal.1094127 schema:issn 0724-4983
207 1433-8726
208 schema:name World Journal of Urology
209 schema:publisher Springer Nature
210 rdf:type schema:Periodical
211 sg:person.01035604211.06 schema:affiliation grid-institutes:grid.414271.5
212 schema:familyName Fardoun
213 schema:givenName Tarek
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035604211.06
215 rdf:type schema:Person
216 sg:person.01041740434.07 schema:affiliation grid-institutes:grid.411165.6
217 schema:familyName Castelli
218 schema:givenName Christel
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041740434.07
220 rdf:type schema:Person
221 sg:person.01070707443.14 schema:affiliation grid-institutes:grid.414271.5
222 schema:familyName Bensalah
223 schema:givenName Karim
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070707443.14
225 rdf:type schema:Person
226 sg:person.01260166612.12 schema:affiliation grid-institutes:grid.487248.5
227 schema:familyName Shariat
228 schema:givenName Shahrokh F.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260166612.12
230 rdf:type schema:Person
231 sg:person.01354643744.48 schema:affiliation grid-institutes:grid.414271.5
232 schema:familyName Mathieu
233 schema:givenName Romain
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354643744.48
235 rdf:type schema:Person
236 sg:person.0576606402.75 schema:affiliation grid-institutes:grid.414271.5
237 schema:familyName Vincendeau
238 schema:givenName Sébastien
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576606402.75
240 rdf:type schema:Person
241 sg:person.0705654524.55 schema:affiliation grid-institutes:grid.414271.5
242 schema:familyName Peyronnet
243 schema:givenName Benoit
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705654524.55
245 rdf:type schema:Person
246 sg:pub.10.1007/s00345-015-1643-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001077850
247 https://doi.org/10.1007/s00345-015-1643-z
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/pcan.2011.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000353220
250 https://doi.org/10.1038/pcan.2011.16
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/srep35364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048447313
253 https://doi.org/10.1038/srep35364
254 rdf:type schema:CreativeWork
255 grid-institutes:grid.411165.6 schema:alternateName BESPIM Department, Nimes University Hospital, Nimes, France
256 schema:name BESPIM Department, Nimes University Hospital, Nimes, France
257 rdf:type schema:Organization
258 grid-institutes:grid.414271.5 schema:alternateName Department of Urology, Service D’urologie, Rennes University Hospital, Hôpital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France
259 schema:name Department of Urology, Service D’urologie, Rennes University Hospital, Hôpital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France
260 rdf:type schema:Organization
261 grid-institutes:grid.487248.5 schema:alternateName Karl Landsteiner Institute, Vienna, Austria
262 schema:name Department of Urology, General Hospital, Medical University Vienna, Vienna, Austria
263 Department of Urology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
264 Department of Urology, Weill Cornell Medical College, New York, NY, USA
265 Karl Landsteiner Institute, Vienna, Austria
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...