Cost analysis of prostate cancer detection including the prostate health index (phi) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-06

AUTHORS

Romain Mathieu, Christel Castelli, Tarek Fardoun, Benoit Peyronnet, Shahrokh F. Shariat, Karim Bensalah, Sébastien Vincendeau

ABSTRACT

ObjectiveTo assess the economic impact of introducing the prostate health index (phi) for prostate cancer (PCa) detection.MethodsA total of 177 patients who presented in an academic institution with a tPSA between 2 and 10 ng/ml and underwent prostate biopsies within the 3 months were enrolled. With phi and tPSA thresholds of 43 and 4 ng/ml, respectively, probability for each branch of a decision tree model for PCa diagnosis and corresponding mean cost were estimated with “Monte Carlo” simulations. A sensitivity analysis was performed.ResultsWith a similar sensitivity, phi strategy increased positive predictive value by 13.9 points and negative predictive value by 31.6 points in comparison to tPSA strategy. Mean costs per patient with tPSA and phi strategies were €514 and €528, respectively, for a phi test price at 50€. One-way sensitivity analysis showed that phi strategy was less expensive (508€/patient) than tPSA strategy with a phi test price below 30€. In multi-criteria sensitivity analysis, PPV and the rates of positive phi and tPSA were the parameters with the largest impact on the final cost as opposed to the cost of the biopsy or imaging which have less influence. With an expected rate of positive phi test < 60%, tPSA strategy was more expensive than phi strategy.ConclusionsThe introduction of phi index in PCa detection would result in a significant clinical benefit compared to tPSA strategy. In our economic model, the phi strategy was equivalent or slightly more expensive than the current tPSA strategy. More... »

PAGES

481-487

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z

DOI

http://dx.doi.org/10.1007/s00345-018-2362-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105335171

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/29980838


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biopsy", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Costs and Cost Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Decision Trees", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Early Detection of Cancer", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "France", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Health Care Costs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Kallikreins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Monte Carlo Method", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Predictive Value of Tests", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostate-Specific Antigen", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Precursors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Quality-Adjusted Life Years", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mathieu", 
        "givenName": "Romain", 
        "id": "sg:person.01354643744.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354643744.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "BESPIM Department, Nimes University Hospital, Nimes, France", 
          "id": "http://www.grid.ac/institutes/grid.411165.6", 
          "name": [
            "BESPIM Department, Nimes University Hospital, Nimes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castelli", 
        "givenName": "Christel", 
        "id": "sg:person.01041740434.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041740434.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fardoun", 
        "givenName": "Tarek", 
        "id": "sg:person.01035604211.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035604211.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Peyronnet", 
        "givenName": "Benoit", 
        "id": "sg:person.0705654524.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705654524.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Karl Landsteiner Institute, Vienna, Austria", 
          "id": "http://www.grid.ac/institutes/grid.487248.5", 
          "name": [
            "Department of Urology, General Hospital, Medical University Vienna, Vienna, Austria", 
            "Department of Urology, University of Texas, Southwestern Medical Center, Dallas, TX, USA", 
            "Department of Urology, Weill Cornell Medical College, New York, NY, USA", 
            "Karl Landsteiner Institute, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shariat", 
        "givenName": "Shahrokh F.", 
        "id": "sg:person.01260166612.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260166612.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bensalah", 
        "givenName": "Karim", 
        "id": "sg:person.01070707443.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070707443.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France", 
          "id": "http://www.grid.ac/institutes/grid.414271.5", 
          "name": [
            "Department of Urology, Service D\u2019urologie, Rennes University Hospital, H\u00f4pital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vincendeau", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.0576606402.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576606402.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/pcan.2011.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000353220", 
          "https://doi.org/10.1038/pcan.2011.16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00345-015-1643-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001077850", 
          "https://doi.org/10.1007/s00345-015-1643-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep35364", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048447313", 
          "https://doi.org/10.1038/srep35364"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-06", 
    "datePublishedReg": "2018-07-06", 
    "description": "ObjectiveTo assess the economic impact of introducing the prostate health index (phi) for prostate cancer (PCa) detection.MethodsA total of 177 patients who presented in an academic institution with a tPSA between 2 and 10\u00a0ng/ml and underwent prostate biopsies within the 3\u00a0months were enrolled. With phi and tPSA thresholds of 43 and 4\u00a0ng/ml, respectively, probability for each branch of a decision tree model for PCa diagnosis and corresponding mean cost were estimated with \u201cMonte Carlo\u201d simulations. A sensitivity analysis was performed.ResultsWith a similar sensitivity, phi strategy increased positive predictive value by 13.9 points and negative predictive value by 31.6 points in comparison to tPSA strategy. Mean costs per patient with tPSA and phi strategies were \u20ac514 and \u20ac528, respectively, for a phi test price at 50\u20ac. One-way sensitivity analysis showed that phi strategy was less expensive (508\u20ac/patient) than tPSA strategy with a phi test price below 30\u20ac. In multi-criteria sensitivity analysis, PPV and the rates of positive phi and tPSA were the parameters with the largest impact on the final cost as opposed to the cost of the biopsy or imaging which have less influence. With an expected rate of positive phi test <\u200960%, tPSA strategy was more expensive than phi strategy.ConclusionsThe introduction of phi index in PCa detection would result in a significant clinical benefit compared to tPSA strategy. In our economic model, the phi strategy was equivalent or slightly more expensive than the current tPSA strategy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00345-018-2362-z", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094127", 
        "issn": [
          "0724-4983", 
          "1433-8726"
        ], 
        "name": "World Journal of Urology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "37"
      }
    ], 
    "keywords": [
      "PHI strategy", 
      "test price", 
      "One-way sensitivity analyses", 
      "sensitivity analysis", 
      "economic model", 
      "economic impact", 
      "Prostate Health Index", 
      "positive phi", 
      "decision tree model", 
      "prices", 
      "prostate cancer detection", 
      "cost analysis", 
      "large impact", 
      "cost", 
      "predictive value", 
      "phi index", 
      "mean cost", 
      "phi test", 
      "underwent prostate biopsy", 
      "final cost", 
      "significant clinical benefit", 
      "negative predictive value", 
      "positive predictive value", 
      "health index", 
      "cancer detection", 
      "clinical benefit", 
      "prostate biopsy", 
      "tree model", 
      "impact", 
      "PCa diagnosis", 
      "PCa detection", 
      "ConclusionsThe introduction", 
      "tPSA", 
      "patients", 
      "institutions", 
      "biopsy", 
      "model", 
      "strategies", 
      "index", 
      "similar sensitivity", 
      "benefits", 
      "less influence", 
      "Monte Carlo", 
      "analysis", 
      "probability", 
      "ObjectiveTo", 
      "diagnosis", 
      "months", 
      "values", 
      "rate", 
      "ResultsWith", 
      "total", 
      "phi", 
      "academic institutions", 
      "PPV", 
      "introduction", 
      "imaging", 
      "point", 
      "detection", 
      "Carlo", 
      "sensitivity", 
      "test", 
      "influence", 
      "comparison", 
      "branches", 
      "simulations", 
      "parameters", 
      "corresponding mean cost", 
      "tPSA strategy", 
      "phi test price", 
      "multi-criteria sensitivity analysis", 
      "positive phi test", 
      "current tPSA strategy"
    ], 
    "name": "Cost analysis of prostate cancer detection including the prostate health index (phi)", 
    "pagination": "481-487", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105335171"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00345-018-2362-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "29980838"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00345-018-2362-z", 
      "https://app.dimensions.ai/details/publication/pub.1105335171"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_770.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00345-018-2362-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00345-018-2362-z'


 

This table displays all metadata directly associated to this object as RDF triples.

266 TRIPLES      22 PREDICATES      119 URIs      108 LITERALS      24 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00345-018-2362-z schema:about N042729ef33a94ba6a14c094f7ecd2ae9
2 N0c0ef1f81d0a40cf868ac67400ecfa10
3 N18c52bd792c842bbb52c75a05ece4d32
4 N30295fea5a9441f2b3da004ff8b5cdb5
5 N4a9b175f89a84cc78ec5d76e816aeacb
6 N4d6163a973ec4a1b9f1be29d39346081
7 N4ee63f2ce49f4a17ac166fdd11095d0f
8 N652c62aa4b104d69a756897316cbc5bf
9 N82be9486132547748c618b46cf6261b2
10 N8c5e28f0da9846369270826e8055e50c
11 N92db36aa542649848ae391dddbb2cfc5
12 N9855e990ec934784a5294afc25c340ac
13 Na8de9c75380d48078257b112fcb22c5d
14 Nbe0463b8c8ca45d39f498c6eaca7df29
15 Nbefd74cfd2bf434db4c84a6c5b14a9c9
16 Nd5859b14c172495e9a364fb8510deb6d
17 Ne9f7c5b47ae14c37b62b821fde219d4a
18 anzsrc-for:11
19 anzsrc-for:1103
20 schema:author N01bebc93c36849d7a0204b1bfb7f7d5d
21 schema:citation sg:pub.10.1007/s00345-015-1643-z
22 sg:pub.10.1038/pcan.2011.16
23 sg:pub.10.1038/srep35364
24 schema:datePublished 2018-07-06
25 schema:datePublishedReg 2018-07-06
26 schema:description ObjectiveTo assess the economic impact of introducing the prostate health index (phi) for prostate cancer (PCa) detection.MethodsA total of 177 patients who presented in an academic institution with a tPSA between 2 and 10 ng/ml and underwent prostate biopsies within the 3 months were enrolled. With phi and tPSA thresholds of 43 and 4 ng/ml, respectively, probability for each branch of a decision tree model for PCa diagnosis and corresponding mean cost were estimated with “Monte Carlo” simulations. A sensitivity analysis was performed.ResultsWith a similar sensitivity, phi strategy increased positive predictive value by 13.9 points and negative predictive value by 31.6 points in comparison to tPSA strategy. Mean costs per patient with tPSA and phi strategies were €514 and €528, respectively, for a phi test price at 50€. One-way sensitivity analysis showed that phi strategy was less expensive (508€/patient) than tPSA strategy with a phi test price below 30€. In multi-criteria sensitivity analysis, PPV and the rates of positive phi and tPSA were the parameters with the largest impact on the final cost as opposed to the cost of the biopsy or imaging which have less influence. With an expected rate of positive phi test < 60%, tPSA strategy was more expensive than phi strategy.ConclusionsThe introduction of phi index in PCa detection would result in a significant clinical benefit compared to tPSA strategy. In our economic model, the phi strategy was equivalent or slightly more expensive than the current tPSA strategy.
27 schema:genre article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N29fa7cb6d34140568dd684de125f728d
31 N949a3ad03b964e338280310cb725e90a
32 sg:journal.1094127
33 schema:keywords Carlo
34 ConclusionsThe introduction
35 Monte Carlo
36 ObjectiveTo
37 One-way sensitivity analyses
38 PCa detection
39 PCa diagnosis
40 PHI strategy
41 PPV
42 Prostate Health Index
43 ResultsWith
44 academic institutions
45 analysis
46 benefits
47 biopsy
48 branches
49 cancer detection
50 clinical benefit
51 comparison
52 corresponding mean cost
53 cost
54 cost analysis
55 current tPSA strategy
56 decision tree model
57 detection
58 diagnosis
59 economic impact
60 economic model
61 final cost
62 health index
63 imaging
64 impact
65 index
66 influence
67 institutions
68 introduction
69 large impact
70 less influence
71 mean cost
72 model
73 months
74 multi-criteria sensitivity analysis
75 negative predictive value
76 parameters
77 patients
78 phi
79 phi index
80 phi test
81 phi test price
82 point
83 positive phi
84 positive phi test
85 positive predictive value
86 predictive value
87 prices
88 probability
89 prostate biopsy
90 prostate cancer detection
91 rate
92 sensitivity
93 sensitivity analysis
94 significant clinical benefit
95 similar sensitivity
96 simulations
97 strategies
98 tPSA
99 tPSA strategy
100 test
101 test price
102 total
103 tree model
104 underwent prostate biopsy
105 values
106 schema:name Cost analysis of prostate cancer detection including the prostate health index (phi)
107 schema:pagination 481-487
108 schema:productId N6bf60c21ec8a4fd9bfdbcfdbe12c24ed
109 N7d94144c14724ff49847c3af381e4d0d
110 N945e655991fd4940ab733df77ecd9aa0
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105335171
112 https://doi.org/10.1007/s00345-018-2362-z
113 schema:sdDatePublished 2022-01-01T18:47
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher N979077e993834f1297e4905d985c7a3e
116 schema:url https://doi.org/10.1007/s00345-018-2362-z
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N01bebc93c36849d7a0204b1bfb7f7d5d rdf:first sg:person.01354643744.48
121 rdf:rest Nc25e53f94479484698cc3d3ec960667f
122 N0221a3e488a546148c8ee178be5b3fe9 rdf:first sg:person.0705654524.55
123 rdf:rest N64703e54c1984759bace50f34cc99c3d
124 N042729ef33a94ba6a14c094f7ecd2ae9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Monte Carlo Method
126 rdf:type schema:DefinedTerm
127 N0c0ef1f81d0a40cf868ac67400ecfa10 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Early Detection of Cancer
129 rdf:type schema:DefinedTerm
130 N18c52bd792c842bbb52c75a05ece4d32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Decision Trees
132 rdf:type schema:DefinedTerm
133 N29fa7cb6d34140568dd684de125f728d schema:issueNumber 3
134 rdf:type schema:PublicationIssue
135 N30295fea5a9441f2b3da004ff8b5cdb5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Predictive Value of Tests
137 rdf:type schema:DefinedTerm
138 N4a9b175f89a84cc78ec5d76e816aeacb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
139 schema:name Kallikreins
140 rdf:type schema:DefinedTerm
141 N4d6163a973ec4a1b9f1be29d39346081 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Prostatic Neoplasms
143 rdf:type schema:DefinedTerm
144 N4ee63f2ce49f4a17ac166fdd11095d0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Aged
146 rdf:type schema:DefinedTerm
147 N64703e54c1984759bace50f34cc99c3d rdf:first sg:person.01260166612.12
148 rdf:rest Ne15bd7b62fda4b26baa0c7f7c05c2a85
149 N652c62aa4b104d69a756897316cbc5bf schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Humans
151 rdf:type schema:DefinedTerm
152 N6bf60c21ec8a4fd9bfdbcfdbe12c24ed schema:name dimensions_id
153 schema:value pub.1105335171
154 rdf:type schema:PropertyValue
155 N7d94144c14724ff49847c3af381e4d0d schema:name doi
156 schema:value 10.1007/s00345-018-2362-z
157 rdf:type schema:PropertyValue
158 N82be9486132547748c618b46cf6261b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Prostate-Specific Antigen
160 rdf:type schema:DefinedTerm
161 N88eaf9f105524b0b95af2cc6cec98cf3 rdf:first sg:person.01035604211.06
162 rdf:rest N0221a3e488a546148c8ee178be5b3fe9
163 N8c5e28f0da9846369270826e8055e50c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Biopsy
165 rdf:type schema:DefinedTerm
166 N92db36aa542649848ae391dddbb2cfc5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Middle Aged
168 rdf:type schema:DefinedTerm
169 N945e655991fd4940ab733df77ecd9aa0 schema:name pubmed_id
170 schema:value 29980838
171 rdf:type schema:PropertyValue
172 N949a3ad03b964e338280310cb725e90a schema:volumeNumber 37
173 rdf:type schema:PublicationVolume
174 N979077e993834f1297e4905d985c7a3e schema:name Springer Nature - SN SciGraph project
175 rdf:type schema:Organization
176 N9855e990ec934784a5294afc25c340ac schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name France
178 rdf:type schema:DefinedTerm
179 Na8de9c75380d48078257b112fcb22c5d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Protein Precursors
181 rdf:type schema:DefinedTerm
182 Nbe0463b8c8ca45d39f498c6eaca7df29 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Male
184 rdf:type schema:DefinedTerm
185 Nbefd74cfd2bf434db4c84a6c5b14a9c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Quality-Adjusted Life Years
187 rdf:type schema:DefinedTerm
188 Nc25e53f94479484698cc3d3ec960667f rdf:first sg:person.01041740434.07
189 rdf:rest N88eaf9f105524b0b95af2cc6cec98cf3
190 Nd5859b14c172495e9a364fb8510deb6d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Health Care Costs
192 rdf:type schema:DefinedTerm
193 Ne15bd7b62fda4b26baa0c7f7c05c2a85 rdf:first sg:person.01070707443.14
194 rdf:rest Nee7db1b68a24422d8c38116adb5adfee
195 Ne9f7c5b47ae14c37b62b821fde219d4a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
196 schema:name Costs and Cost Analysis
197 rdf:type schema:DefinedTerm
198 Nee7db1b68a24422d8c38116adb5adfee rdf:first sg:person.0576606402.75
199 rdf:rest rdf:nil
200 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
201 schema:name Medical and Health Sciences
202 rdf:type schema:DefinedTerm
203 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
204 schema:name Clinical Sciences
205 rdf:type schema:DefinedTerm
206 sg:journal.1094127 schema:issn 0724-4983
207 1433-8726
208 schema:name World Journal of Urology
209 schema:publisher Springer Nature
210 rdf:type schema:Periodical
211 sg:person.01035604211.06 schema:affiliation grid-institutes:grid.414271.5
212 schema:familyName Fardoun
213 schema:givenName Tarek
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01035604211.06
215 rdf:type schema:Person
216 sg:person.01041740434.07 schema:affiliation grid-institutes:grid.411165.6
217 schema:familyName Castelli
218 schema:givenName Christel
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01041740434.07
220 rdf:type schema:Person
221 sg:person.01070707443.14 schema:affiliation grid-institutes:grid.414271.5
222 schema:familyName Bensalah
223 schema:givenName Karim
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070707443.14
225 rdf:type schema:Person
226 sg:person.01260166612.12 schema:affiliation grid-institutes:grid.487248.5
227 schema:familyName Shariat
228 schema:givenName Shahrokh F.
229 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260166612.12
230 rdf:type schema:Person
231 sg:person.01354643744.48 schema:affiliation grid-institutes:grid.414271.5
232 schema:familyName Mathieu
233 schema:givenName Romain
234 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354643744.48
235 rdf:type schema:Person
236 sg:person.0576606402.75 schema:affiliation grid-institutes:grid.414271.5
237 schema:familyName Vincendeau
238 schema:givenName Sébastien
239 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0576606402.75
240 rdf:type schema:Person
241 sg:person.0705654524.55 schema:affiliation grid-institutes:grid.414271.5
242 schema:familyName Peyronnet
243 schema:givenName Benoit
244 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0705654524.55
245 rdf:type schema:Person
246 sg:pub.10.1007/s00345-015-1643-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1001077850
247 https://doi.org/10.1007/s00345-015-1643-z
248 rdf:type schema:CreativeWork
249 sg:pub.10.1038/pcan.2011.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000353220
250 https://doi.org/10.1038/pcan.2011.16
251 rdf:type schema:CreativeWork
252 sg:pub.10.1038/srep35364 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048447313
253 https://doi.org/10.1038/srep35364
254 rdf:type schema:CreativeWork
255 grid-institutes:grid.411165.6 schema:alternateName BESPIM Department, Nimes University Hospital, Nimes, France
256 schema:name BESPIM Department, Nimes University Hospital, Nimes, France
257 rdf:type schema:Organization
258 grid-institutes:grid.414271.5 schema:alternateName Department of Urology, Service D’urologie, Rennes University Hospital, Hôpital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France
259 schema:name Department of Urology, Service D’urologie, Rennes University Hospital, Hôpital Pontchaillou, 2, rue Henri Le Guillou, 35000, Rennes, France
260 rdf:type schema:Organization
261 grid-institutes:grid.487248.5 schema:alternateName Karl Landsteiner Institute, Vienna, Austria
262 schema:name Department of Urology, General Hospital, Medical University Vienna, Vienna, Austria
263 Department of Urology, University of Texas, Southwestern Medical Center, Dallas, TX, USA
264 Department of Urology, Weill Cornell Medical College, New York, NY, USA
265 Karl Landsteiner Institute, Vienna, Austria
266 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...