Three dimensional ultrasound and prostate cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-10

AUTHORS

S. S. Mehta, A. R. Azzouzi, F. C. Hamdy

ABSTRACT

Three-dimensional ultrasound (3-D US) is a non-invasive method of producing whole volume images of solid structures. Early work on prostate imaging identified several advantages over 2-D imaging with a good ability to detect intraprostatic lesions. Several 3-D transrectal ultrasound (3-D TRUS) systems are now available for prostate imaging. Initial work using gray scale ultrasound appears promising with reported overall staging accuracies of up to 94%. These results were favourable when compared to other modalities for local staging of prostate cancer. Several adjuncts to 3-D gray scale TRUS have been investigated. A greater sensitivity for cancer detection has been achieved with the addition of power colour Doppler and contrast agents. Further clinical applications for 3-D TRUS include assessing placement of brachytherapy seeds and for cyroablation techniques. Computer enhancement with image registration has shown that 3-D US images can be manipulated to derive more information. Although the results of gray scale imaging alone or with adjuncts and post processing appear promising, these techniques remain largely experimental. More... »

PAGES

339-345

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00345-004-0417-9

DOI

http://dx.doi.org/10.1007/s00345-004-0417-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037783828

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/15549322


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Equipment Design", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Staging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prostatic Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Ultrasonography", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Royal Hallamshire Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416126.6", 
          "name": [
            "Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mehta", 
        "givenName": "S. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Hallamshire Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416126.6", 
          "name": [
            "Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Azzouzi", 
        "givenName": "A. R.", 
        "id": "sg:person.0640033232.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640033232.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Royal Hallamshire Hospital", 
          "id": "https://www.grid.ac/institutes/grid.416126.6", 
          "name": [
            "Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hamdy", 
        "givenName": "F. C.", 
        "id": "sg:person.016116245104.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016116245104.05"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0090-4295(89)90367-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001961565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/jpme.1989.17.1.19", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006572905"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(01)66875-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006911607"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ultrasmedbio.2003.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007353655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-9260(05)83287-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010193811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.1326448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011208305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(01)00949-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012075384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(99)00040-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016274152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3322/canjclin.43.1.42", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017939866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19990401)85:7<1577::aid-cncr20>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020442972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0142(19990401)85:7<1577::aid-cncr20>3.0.co;2-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020442972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(97)00293-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022958088"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1464-410x.2001.00018.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025806596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000019777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026436279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.212.3.r99se33719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027167165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0215(20000101)85:1<60::aid-ijc11>3.0.co;2-b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029011266"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(05)68276-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031208581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0090-4295(00)01115-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032621840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(01)63769-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035618833"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1464-410x.1992.tb15490.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041893291"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00042307-200103000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043274170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00042307-200103000-00009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043274170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199009063231001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047060133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0735-1097(93)90594-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047421100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0302-2838(03)00204-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047847687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0302-2838(03)00204-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047847687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1464-410x.2000.00719.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053454904"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7863/jum.2003.22.11.1239", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053704710"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199510000-00039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060211858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199510000-00039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060211858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199510000-00039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060211858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199803000-00081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060214581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199803000-00081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060214581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199803000-00081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060214581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199910000-00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060218755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199910000-00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060218755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/00005392-199910000-00020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060218755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.165.3.7645513", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069319619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)38664-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079183736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)38971-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079212190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)39050-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079218412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)32460-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082397933"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)31663-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082398814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.186.2.7678467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082462800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-5347(17)35415-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082464972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.190.3.8115639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082657987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.192.1.8208953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1082702292"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-10", 
    "datePublishedReg": "2004-10-01", 
    "description": "Three-dimensional ultrasound (3-D US) is a non-invasive method of producing whole volume images of solid structures. Early work on prostate imaging identified several advantages over 2-D imaging with a good ability to detect intraprostatic lesions. Several 3-D transrectal ultrasound (3-D TRUS) systems are now available for prostate imaging. Initial work using gray scale ultrasound appears promising with reported overall staging accuracies of up to 94%. These results were favourable when compared to other modalities for local staging of prostate cancer. Several adjuncts to 3-D gray scale TRUS have been investigated. A greater sensitivity for cancer detection has been achieved with the addition of power colour Doppler and contrast agents. Further clinical applications for 3-D TRUS include assessing placement of brachytherapy seeds and for cyroablation techniques. Computer enhancement with image registration has shown that 3-D US images can be manipulated to derive more information. Although the results of gray scale imaging alone or with adjuncts and post processing appear promising, these techniques remain largely experimental.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00345-004-0417-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1094127", 
        "issn": [
          "0724-4983", 
          "1433-8726"
        ], 
        "name": "World Journal of Urology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "Three dimensional ultrasound and prostate cancer", 
    "pagination": "339-345", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b3fda383ecc6f8691ca1ebc7235f82fc0a3981ed925a5df9f2f116def5ff15fb"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "15549322"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "8307716"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00345-004-0417-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037783828"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00345-004-0417-9", 
      "https://app.dimensions.ai/details/publication/pub.1037783828"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000514.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00345-004-0417-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00345-004-0417-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00345-004-0417-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00345-004-0417-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00345-004-0417-9'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      75 URIs      29 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00345-004-0417-9 schema:about N20baadb878164e5589b58e454eb19cd3
2 N3dbdf4600f174837bb1797ecc56f1360
3 N46fce4a333884708a07a4a710ffd9a77
4 N48c5897b268b4d58bce8a6ce8b72a3a9
5 Nb55cb8f31d6b4b3e902936bd90d56a08
6 Nb7138fe887ce4df0b1ed1155b7aee88f
7 Nd1074de5fae7431191f18c7f32f90a36
8 Ne17df1d1370c4edab21977ac313ce419
9 anzsrc-for:08
10 anzsrc-for:0801
11 schema:author N36eee8a96a40488596e450733ea9eae1
12 schema:citation https://doi.org/10.1002/(sici)1097-0142(19990401)85:7<1577::aid-cncr20>3.0.co;2-g
13 https://doi.org/10.1002/(sici)1097-0215(20000101)85:1<60::aid-ijc11>3.0.co;2-b
14 https://doi.org/10.1016/0090-4295(89)90367-1
15 https://doi.org/10.1016/0735-1097(93)90594-q
16 https://doi.org/10.1016/j.ultrasmedbio.2003.10.004
17 https://doi.org/10.1016/s0009-9260(05)83287-8
18 https://doi.org/10.1016/s0022-5347(01)63769-8
19 https://doi.org/10.1016/s0022-5347(01)66875-7
20 https://doi.org/10.1016/s0022-5347(05)68276-6
21 https://doi.org/10.1016/s0022-5347(17)31663-4
22 https://doi.org/10.1016/s0022-5347(17)32460-6
23 https://doi.org/10.1016/s0022-5347(17)35415-0
24 https://doi.org/10.1016/s0022-5347(17)38664-0
25 https://doi.org/10.1016/s0022-5347(17)38971-1
26 https://doi.org/10.1016/s0022-5347(17)39050-x
27 https://doi.org/10.1016/s0090-4295(00)01115-8
28 https://doi.org/10.1016/s0090-4295(01)00949-9
29 https://doi.org/10.1016/s0090-4295(97)00293-8
30 https://doi.org/10.1016/s0090-4295(99)00040-0
31 https://doi.org/10.1016/s0302-2838(03)00204-5
32 https://doi.org/10.1046/j.1464-410x.2000.00719.x
33 https://doi.org/10.1046/j.1464-410x.2001.00018.x
34 https://doi.org/10.1056/nejm199009063231001
35 https://doi.org/10.1097/00005392-199510000-00039
36 https://doi.org/10.1097/00005392-199803000-00081
37 https://doi.org/10.1097/00005392-199910000-00020
38 https://doi.org/10.1097/00042307-200103000-00009
39 https://doi.org/10.1111/j.1464-410x.1992.tb15490.x
40 https://doi.org/10.1118/1.1326448
41 https://doi.org/10.1148/radiology.186.2.7678467
42 https://doi.org/10.1148/radiology.190.3.8115639
43 https://doi.org/10.1148/radiology.192.1.8208953
44 https://doi.org/10.1148/radiology.212.3.r99se33719
45 https://doi.org/10.1159/000019777
46 https://doi.org/10.1515/jpme.1989.17.1.19
47 https://doi.org/10.2214/ajr.165.3.7645513
48 https://doi.org/10.3322/canjclin.43.1.42
49 https://doi.org/10.7863/jum.2003.22.11.1239
50 schema:datePublished 2004-10
51 schema:datePublishedReg 2004-10-01
52 schema:description Three-dimensional ultrasound (3-D US) is a non-invasive method of producing whole volume images of solid structures. Early work on prostate imaging identified several advantages over 2-D imaging with a good ability to detect intraprostatic lesions. Several 3-D transrectal ultrasound (3-D TRUS) systems are now available for prostate imaging. Initial work using gray scale ultrasound appears promising with reported overall staging accuracies of up to 94%. These results were favourable when compared to other modalities for local staging of prostate cancer. Several adjuncts to 3-D gray scale TRUS have been investigated. A greater sensitivity for cancer detection has been achieved with the addition of power colour Doppler and contrast agents. Further clinical applications for 3-D TRUS include assessing placement of brachytherapy seeds and for cyroablation techniques. Computer enhancement with image registration has shown that 3-D US images can be manipulated to derive more information. Although the results of gray scale imaging alone or with adjuncts and post processing appear promising, these techniques remain largely experimental.
53 schema:genre research_article
54 schema:inLanguage en
55 schema:isAccessibleForFree false
56 schema:isPartOf N1b5ec4f5b0114990a78f17b1aa9dc163
57 Ne8bfa75e3ecc4aafb9aa6f4822d1955a
58 sg:journal.1094127
59 schema:name Three dimensional ultrasound and prostate cancer
60 schema:pagination 339-345
61 schema:productId N4794c80d7b4f49be9be1a8bc77eed80a
62 N73e04263469b4484921fe9a500e5f267
63 Nc018edcc68dc474ead718efa9d7c345d
64 Nc1269187719c43079d388455c3c504ea
65 Nc46a3366526049dda0694a066b2ec4c7
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037783828
67 https://doi.org/10.1007/s00345-004-0417-9
68 schema:sdDatePublished 2019-04-10T23:25
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N1e4f48dac16a482898e9656e4c7796c0
71 schema:url http://link.springer.com/10.1007%2Fs00345-004-0417-9
72 sgo:license sg:explorer/license/
73 sgo:sdDataset articles
74 rdf:type schema:ScholarlyArticle
75 N1b5ec4f5b0114990a78f17b1aa9dc163 schema:volumeNumber 22
76 rdf:type schema:PublicationVolume
77 N1e4f48dac16a482898e9656e4c7796c0 schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N20baadb878164e5589b58e454eb19cd3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Neoplasm Staging
81 rdf:type schema:DefinedTerm
82 N36eee8a96a40488596e450733ea9eae1 rdf:first N412fe06888fd40529f19216f0b788eb1
83 rdf:rest N98309848c0e14139b998ab80509ad2e2
84 N3dbdf4600f174837bb1797ecc56f1360 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Equipment Design
86 rdf:type schema:DefinedTerm
87 N412fe06888fd40529f19216f0b788eb1 schema:affiliation https://www.grid.ac/institutes/grid.416126.6
88 schema:familyName Mehta
89 schema:givenName S. S.
90 rdf:type schema:Person
91 N46fce4a333884708a07a4a710ffd9a77 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Ultrasonography
93 rdf:type schema:DefinedTerm
94 N4794c80d7b4f49be9be1a8bc77eed80a schema:name readcube_id
95 schema:value b3fda383ecc6f8691ca1ebc7235f82fc0a3981ed925a5df9f2f116def5ff15fb
96 rdf:type schema:PropertyValue
97 N48c5897b268b4d58bce8a6ce8b72a3a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
98 schema:name Male
99 rdf:type schema:DefinedTerm
100 N73e04263469b4484921fe9a500e5f267 schema:name doi
101 schema:value 10.1007/s00345-004-0417-9
102 rdf:type schema:PropertyValue
103 N797038766c854deba3871660dd8f52aa rdf:first sg:person.016116245104.05
104 rdf:rest rdf:nil
105 N98309848c0e14139b998ab80509ad2e2 rdf:first sg:person.0640033232.58
106 rdf:rest N797038766c854deba3871660dd8f52aa
107 Nb55cb8f31d6b4b3e902936bd90d56a08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Imaging, Three-Dimensional
109 rdf:type schema:DefinedTerm
110 Nb7138fe887ce4df0b1ed1155b7aee88f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Prostatic Neoplasms
112 rdf:type schema:DefinedTerm
113 Nc018edcc68dc474ead718efa9d7c345d schema:name nlm_unique_id
114 schema:value 8307716
115 rdf:type schema:PropertyValue
116 Nc1269187719c43079d388455c3c504ea schema:name dimensions_id
117 schema:value pub.1037783828
118 rdf:type schema:PropertyValue
119 Nc46a3366526049dda0694a066b2ec4c7 schema:name pubmed_id
120 schema:value 15549322
121 rdf:type schema:PropertyValue
122 Nd1074de5fae7431191f18c7f32f90a36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Sensitivity and Specificity
124 rdf:type schema:DefinedTerm
125 Ne17df1d1370c4edab21977ac313ce419 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Humans
127 rdf:type schema:DefinedTerm
128 Ne8bfa75e3ecc4aafb9aa6f4822d1955a schema:issueNumber 5
129 rdf:type schema:PublicationIssue
130 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information and Computing Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
134 schema:name Artificial Intelligence and Image Processing
135 rdf:type schema:DefinedTerm
136 sg:journal.1094127 schema:issn 0724-4983
137 1433-8726
138 schema:name World Journal of Urology
139 rdf:type schema:Periodical
140 sg:person.016116245104.05 schema:affiliation https://www.grid.ac/institutes/grid.416126.6
141 schema:familyName Hamdy
142 schema:givenName F. C.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016116245104.05
144 rdf:type schema:Person
145 sg:person.0640033232.58 schema:affiliation https://www.grid.ac/institutes/grid.416126.6
146 schema:familyName Azzouzi
147 schema:givenName A. R.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640033232.58
149 rdf:type schema:Person
150 https://doi.org/10.1002/(sici)1097-0142(19990401)85:7<1577::aid-cncr20>3.0.co;2-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1020442972
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1002/(sici)1097-0215(20000101)85:1<60::aid-ijc11>3.0.co;2-b schema:sameAs https://app.dimensions.ai/details/publication/pub.1029011266
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/0090-4295(89)90367-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001961565
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/0735-1097(93)90594-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1047421100
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.ultrasmedbio.2003.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007353655
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/s0009-9260(05)83287-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010193811
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0022-5347(01)63769-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035618833
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0022-5347(01)66875-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006911607
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/s0022-5347(05)68276-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031208581
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/s0022-5347(17)31663-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082398814
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/s0022-5347(17)32460-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082397933
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/s0022-5347(17)35415-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082464972
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0022-5347(17)38664-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079183736
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/s0022-5347(17)38971-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079212190
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/s0022-5347(17)39050-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1079218412
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/s0090-4295(00)01115-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032621840
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/s0090-4295(01)00949-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012075384
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/s0090-4295(97)00293-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022958088
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/s0090-4295(99)00040-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016274152
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/s0302-2838(03)00204-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047847687
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1046/j.1464-410x.2000.00719.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1053454904
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1046/j.1464-410x.2001.00018.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025806596
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1056/nejm199009063231001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047060133
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1097/00005392-199510000-00039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060211858
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1097/00005392-199803000-00081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060214581
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1097/00005392-199910000-00020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060218755
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1097/00042307-200103000-00009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043274170
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1111/j.1464-410x.1992.tb15490.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1041893291
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1118/1.1326448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011208305
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1148/radiology.186.2.7678467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082462800
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1148/radiology.190.3.8115639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082657987
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1148/radiology.192.1.8208953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082702292
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1148/radiology.212.3.r99se33719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027167165
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1159/000019777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026436279
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1515/jpme.1989.17.1.19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006572905
219 rdf:type schema:CreativeWork
220 https://doi.org/10.2214/ajr.165.3.7645513 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069319619
221 rdf:type schema:CreativeWork
222 https://doi.org/10.3322/canjclin.43.1.42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017939866
223 rdf:type schema:CreativeWork
224 https://doi.org/10.7863/jum.2003.22.11.1239 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053704710
225 rdf:type schema:CreativeWork
226 https://www.grid.ac/institutes/grid.416126.6 schema:alternateName Royal Hallamshire Hospital
227 schema:name Royal Hallamshire Hospital, Glossop Road, Sheffield, S10 2JF, UK
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...