Ontology type: schema:ScholarlyArticle
2019-04
AUTHORSV. A. Schanz, C. Brabetz, D. J. Posor, D. Reemts, M. Roth, V. Bagnoud
ABSTRACTTemporal pulse profile characterization is necessary to ensure and quantify the quality of short pulse laser systems. Yet it remains challenging to measure the temporal behavior of a pulse in all of its comprehensiveness. In this manuscript we present results which encourage to perform more ambitious pulse characterizations with optimized scanning cross-correlators. Several temporal laser pulse profile measurements in multiple nanosecond time scale with high dynamic range are shown. The measurements were taken by our in-house third-order cross-correlator EICHEL (Schanz et al. in Opt Express 25:9252, 2017), which is able to resolve the intensity dynamics down to the level of amplified spontaneous emission. With this device we show for the first time the onset of the plateau of the amplified spontaneous emission in the laser profile and investigate the origin of several side-pulses created early in the laser system. More... »
PAGES61
http://scigraph.springernature.com/pub.10.1007/s00340-019-7172-5
DOIhttp://dx.doi.org/10.1007/s00340-019-7172-5
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1112918602
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Optical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "GSI Helmholtz Centre for Heavy Ion Research",
"id": "https://www.grid.ac/institutes/grid.159791.2",
"name": [
"Technische Universit\u00e4t Darmstadt, Darmstadt, Germany",
"GSI Helmholtzzentrum f\u00fcr Schwerionenforschung GmbH, Darmstadt, Germany"
],
"type": "Organization"
},
"familyName": "Schanz",
"givenName": "V. A.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "GSI Helmholtz Centre for Heavy Ion Research",
"id": "https://www.grid.ac/institutes/grid.159791.2",
"name": [
"GSI Helmholtzzentrum f\u00fcr Schwerionenforschung GmbH, Darmstadt, Germany"
],
"type": "Organization"
},
"familyName": "Brabetz",
"givenName": "C.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Technical University of Darmstadt",
"id": "https://www.grid.ac/institutes/grid.6546.1",
"name": [
"Technische Universit\u00e4t Darmstadt, Darmstadt, Germany"
],
"type": "Organization"
},
"familyName": "Posor",
"givenName": "D. J.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "GSI Helmholtz Centre for Heavy Ion Research",
"id": "https://www.grid.ac/institutes/grid.159791.2",
"name": [
"GSI Helmholtzzentrum f\u00fcr Schwerionenforschung GmbH, Darmstadt, Germany"
],
"type": "Organization"
},
"familyName": "Reemts",
"givenName": "D.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Facility for Antiproton and Ion Research",
"id": "https://www.grid.ac/institutes/grid.498309.f",
"name": [
"Technische Universit\u00e4t Darmstadt, Darmstadt, Germany",
"FAIR-Facility for Antiproton and Ion Research in Europe GmbH, Darmstadt, Germany"
],
"type": "Organization"
},
"familyName": "Roth",
"givenName": "M.",
"type": "Person"
},
{
"affiliation": {
"alternateName": "Helmholtz Institute Jena",
"id": "https://www.grid.ac/institutes/grid.450266.3",
"name": [
"GSI Helmholtzzentrum f\u00fcr Schwerionenforschung GmbH, Darmstadt, Germany",
"Helmholtz Institute Jena, Jena, Germany"
],
"type": "Organization"
},
"familyName": "Bagnoud",
"givenName": "V.",
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1017/hpl.2016.38",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006605740"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys595",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037339175",
"https://doi.org/10.1038/nphys595"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nphys595",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037339175",
"https://doi.org/10.1038/nphys595"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00340-013-5714-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038210506",
"https://doi.org/10.1007/s00340-013-5714-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00340-013-5714-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038210506",
"https://doi.org/10.1007/s00340-013-5714-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00340-009-3855-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039766053",
"https://doi.org/10.1007/s00340-009-3855-7"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00340-009-3855-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039766053",
"https://doi.org/10.1007/s00340-009-3855-7"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0263034605050469",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053805014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1017/s0263034605050469",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053805014"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.69.026402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060731159"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreve.69.026402",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060731159"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ao.42.007231",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065118680"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/josab.29.001125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065174054"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/oe.16.003178",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065187182"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/oe.19.002193",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065195742"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ol.30.000920",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1065222692"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/oe.25.009252",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1084827005"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1364/ol.42.003530",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1091624250"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-04",
"datePublishedReg": "2019-04-01",
"description": "Temporal pulse profile characterization is necessary to ensure and quantify the quality of short pulse laser systems. Yet it remains challenging to measure the temporal behavior of a pulse in all of its comprehensiveness. In this manuscript we present results which encourage to perform more ambitious pulse characterizations with optimized scanning cross-correlators. Several temporal laser pulse profile measurements in multiple nanosecond time scale with high dynamic range are shown. The measurements were taken by our in-house third-order cross-correlator EICHEL (Schanz et al. in Opt Express 25:9252, 2017), which is able to resolve the intensity dynamics down to the level of amplified spontaneous emission. With this device we show for the first time the onset of the plateau of the amplified spontaneous emission in the laser profile and investigate the origin of several side-pulses created early in the laser system.",
"genre": "research_article",
"id": "sg:pub.10.1007/s00340-019-7172-5",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1312262",
"issn": [
"0946-2171",
"1432-0649"
],
"name": "Applied Physics B",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "125"
}
],
"name": "High dynamic range, large temporal domain laser pulse measurement",
"pagination": "61",
"productId": [
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00340-019-7172-5"
]
},
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"5b29aa376e313b638f10824002334865948b75402e4f8c83223b01a7d1530dc5"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1112918602"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00340-019-7172-5",
"https://app.dimensions.ai/details/publication/pub.1112918602"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-15T08:49",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000374_0000000374/records_119724_00000001.jsonl",
"type": "ScholarlyArticle",
"url": "https://link.springer.com/10.1007%2Fs00340-019-7172-5"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7172-5'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7172-5'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7172-5'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7172-5'
This table displays all metadata directly associated to this object as RDF triples.
144 TRIPLES
21 PREDICATES
40 URIs
19 LITERALS
7 BLANK NODES