Optimization of laser-based synchrotron X-ray for plant imaging View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

S. Fourmaux, E. Hallin, P. G. Arnison, J. C. Kieffer

ABSTRACT

X-ray computed tomography of plants requires a high number of X-ray photons, good source stability, and a large field of view. We show that we can optimize a laser-based synchrotron X-ray source for this application. The X-ray beam is produced during electron acceleration by laser wakefield. These results were obtained using 160 TW on-target laser peak power, 4.6×1019Wcm-2 laser pulse intensity, and nitrogen gas target. We measured a critical energy ∼ 15 keV, enough X-ray photons to realize an image with one single laser shot, more than 50 mrad divergence, a good shot to shot stability and spatial distribution homogeneity required for tomography imaging. The gas jet target pressure is low enough to use the laser system at the laser nominal repetition rate (2.5 Hz). We produced a micrometer X-ray source size that allows high resolution (< 20 μm) and phase contrast imaging. More... »

PAGES

34

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00340-019-7144-9

DOI

http://dx.doi.org/10.1007/s00340-019-7144-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111934807


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Scientifique", 
          "id": "https://www.grid.ac/institutes/grid.418084.1", 
          "name": [
            "Institut National de la Recherche Scientifique, \u00c9nergie, Mat\u00e9riaux et T\u00e9l\u00e9communications, Universit\u00e9 du Qu\u00e9bec (INRS-EMT), 1650 Lionel Boulet, J3X 1S2, Varennes, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fourmaux", 
        "givenName": "S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Saskatchewan", 
          "id": "https://www.grid.ac/institutes/grid.25152.31", 
          "name": [
            "Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, S7N 4J8, Saskatoon, SK, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hallin", 
        "givenName": "E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Saskatchewan", 
          "id": "https://www.grid.ac/institutes/grid.25152.31", 
          "name": [
            "Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, S7N 4J8, Saskatoon, SK, Canada", 
            "Botanical Alternatives Inc., 8B-3110 8th Street E, S7H 0W2, Saskatoon, SK, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Arnison", 
        "givenName": "P. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut National de la Recherche Scientifique", 
          "id": "https://www.grid.ac/institutes/grid.418084.1", 
          "name": [
            "Institut National de la Recherche Scientifique, \u00c9nergie, Mat\u00e9riaux et T\u00e9l\u00e9communications, Universit\u00e9 du Qu\u00e9bec (INRS-EMT), 1650 Lionel Boulet, J3X 1S2, Varennes, QC, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kieffer", 
        "givenName": "J. C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature02939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000739651", 
          "https://doi.org/10.1038/nature02939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/384335a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007628077", 
          "https://doi.org/10.1038/384335a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2389.2012.01487.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009029190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8137.2005.01389.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009128993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/aob/mcs031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009154260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011315455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/treephys/tpq058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011315455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013290893", 
          "https://doi.org/10.1038/nphoton.2008.155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.85.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015710152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep13244", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020702251", 
          "https://doi.org/10.1038/srep13244"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444913013619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030254711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4902127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033456330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/3/033017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038165507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048337928", 
          "https://doi.org/10.1038/ncomms8568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051610649", 
          "https://doi.org/10.1038/srep27633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep27846", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052125078", 
          "https://doi.org/10.1038/srep27846"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys1789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052746552", 
          "https://doi.org/10.1038/nphys1789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1146073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057674205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3627216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057987837"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3685464", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058000636"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.025003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.025003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756473"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.025004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.104.025004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.105003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.105003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060757400"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.225002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.97.225002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060833183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.36.002426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065230411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2263951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085428615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.053208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085547928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.053208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085547928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/aab8d2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101679715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/aab8d2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101679715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1361-6560/aab8d2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101679715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2319887", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107065761"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "X-ray computed tomography of plants requires a high number of X-ray photons, good source stability, and a large field of view. We show that we can optimize a laser-based synchrotron X-ray source for this application. The X-ray beam is produced during electron acceleration by laser wakefield. These results were obtained using 160 TW on-target laser peak power, 4.6\u00d71019Wcm-2 laser pulse intensity, and nitrogen gas target. We measured a critical energy \u223c 15 keV, enough X-ray photons to realize an image with one single laser shot, more than 50 mrad divergence, a good shot to shot stability and spatial distribution homogeneity required for tomography imaging. The gas jet target pressure is low enough to use the laser system at the laser nominal repetition rate (2.5 Hz). We produced a micrometer X-ray source size that allows high resolution (< 20 \u03bcm) and phase contrast imaging.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00340-019-7144-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312262", 
        "issn": [
          "0946-2171", 
          "1432-0649"
        ], 
        "name": "Applied Physics B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "125"
      }
    ], 
    "name": "Optimization of laser-based synchrotron X-ray for plant imaging", 
    "pagination": "34", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "39bf0ce87e7f38b58226c5a8be02945ad1d25183d23a2329d1e75354ed34c66e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00340-019-7144-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111934807"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00340-019-7144-9", 
      "https://app.dimensions.ai/details/publication/pub.1111934807"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000359_0000000359/records_29181_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00340-019-7144-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7144-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7144-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7144-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00340-019-7144-9'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00340-019-7144-9 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Na4861e05c8d44eb7b15f4f3ec147267c
4 schema:citation sg:pub.10.1038/384335a0
5 sg:pub.10.1038/nature02939
6 sg:pub.10.1038/ncomms8568
7 sg:pub.10.1038/nphoton.2008.155
8 sg:pub.10.1038/nphys1789
9 sg:pub.10.1038/srep13244
10 sg:pub.10.1038/srep27633
11 sg:pub.10.1038/srep27846
12 https://doi.org/10.1063/1.1146073
13 https://doi.org/10.1063/1.3627216
14 https://doi.org/10.1063/1.3685464
15 https://doi.org/10.1063/1.4902127
16 https://doi.org/10.1088/1361-6560/aab8d2
17 https://doi.org/10.1088/1367-2630/13/3/033017
18 https://doi.org/10.1093/aob/mcs031
19 https://doi.org/10.1093/treephys/tpq058
20 https://doi.org/10.1103/physreve.95.053208
21 https://doi.org/10.1103/physrevlett.104.025003
22 https://doi.org/10.1103/physrevlett.104.025004
23 https://doi.org/10.1103/physrevlett.105.105003
24 https://doi.org/10.1103/physrevlett.97.225002
25 https://doi.org/10.1103/revmodphys.85.1
26 https://doi.org/10.1107/s0907444913013619
27 https://doi.org/10.1111/j.1365-2389.2012.01487.x
28 https://doi.org/10.1111/j.1469-8137.2005.01389.x
29 https://doi.org/10.1117/12.2263951
30 https://doi.org/10.1117/12.2319887
31 https://doi.org/10.1364/ol.36.002426
32 schema:datePublished 2019-03
33 schema:datePublishedReg 2019-03-01
34 schema:description X-ray computed tomography of plants requires a high number of X-ray photons, good source stability, and a large field of view. We show that we can optimize a laser-based synchrotron X-ray source for this application. The X-ray beam is produced during electron acceleration by laser wakefield. These results were obtained using 160 TW on-target laser peak power, 4.6×1019Wcm-2 laser pulse intensity, and nitrogen gas target. We measured a critical energy ∼ 15 keV, enough X-ray photons to realize an image with one single laser shot, more than 50 mrad divergence, a good shot to shot stability and spatial distribution homogeneity required for tomography imaging. The gas jet target pressure is low enough to use the laser system at the laser nominal repetition rate (2.5 Hz). We produced a micrometer X-ray source size that allows high resolution (< 20 μm) and phase contrast imaging.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf Naa2d2091667e46dd8b339fa30f7a7f9e
39 Nf58d199a6b23497a8fbfc079f66d0e73
40 sg:journal.1312262
41 schema:name Optimization of laser-based synchrotron X-ray for plant imaging
42 schema:pagination 34
43 schema:productId N05eb598eee73458184cdf2403d0f6458
44 Nb212965491ca43b6abaca0690ff144e5
45 Nc1c479ed3c2144568d0a032fe3936898
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111934807
47 https://doi.org/10.1007/s00340-019-7144-9
48 schema:sdDatePublished 2019-04-11T11:50
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Ne3a6d79ee32c411597c4cf141f89c52c
51 schema:url https://link.springer.com/10.1007%2Fs00340-019-7144-9
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N05eb598eee73458184cdf2403d0f6458 schema:name doi
56 schema:value 10.1007/s00340-019-7144-9
57 rdf:type schema:PropertyValue
58 N368445663538434bacb374bfd10975d1 rdf:first N7cf78a4cd2a545b199ad46fcb69f78db
59 rdf:rest Nc9c0753cb9e8420093a0542428effc6b
60 N3dfc12ca73984db28bc9e16c8e118603 schema:affiliation https://www.grid.ac/institutes/grid.418084.1
61 schema:familyName Fourmaux
62 schema:givenName S.
63 rdf:type schema:Person
64 N7390209502eb47b396793c3918682bcc schema:affiliation https://www.grid.ac/institutes/grid.25152.31
65 schema:familyName Hallin
66 schema:givenName E.
67 rdf:type schema:Person
68 N7cf78a4cd2a545b199ad46fcb69f78db schema:affiliation https://www.grid.ac/institutes/grid.25152.31
69 schema:familyName Arnison
70 schema:givenName P. G.
71 rdf:type schema:Person
72 Na4861e05c8d44eb7b15f4f3ec147267c rdf:first N3dfc12ca73984db28bc9e16c8e118603
73 rdf:rest Nce1612652ac54dedaacc02a55e08ab03
74 Naa2d2091667e46dd8b339fa30f7a7f9e schema:volumeNumber 125
75 rdf:type schema:PublicationVolume
76 Nb212965491ca43b6abaca0690ff144e5 schema:name dimensions_id
77 schema:value pub.1111934807
78 rdf:type schema:PropertyValue
79 Nc1c479ed3c2144568d0a032fe3936898 schema:name readcube_id
80 schema:value 39bf0ce87e7f38b58226c5a8be02945ad1d25183d23a2329d1e75354ed34c66e
81 rdf:type schema:PropertyValue
82 Nc9c0753cb9e8420093a0542428effc6b rdf:first Nf6dfd2a5e821498497a65859c0b2f5bb
83 rdf:rest rdf:nil
84 Nce1612652ac54dedaacc02a55e08ab03 rdf:first N7390209502eb47b396793c3918682bcc
85 rdf:rest N368445663538434bacb374bfd10975d1
86 Ne3a6d79ee32c411597c4cf141f89c52c schema:name Springer Nature - SN SciGraph project
87 rdf:type schema:Organization
88 Nf58d199a6b23497a8fbfc079f66d0e73 schema:issueNumber 3
89 rdf:type schema:PublicationIssue
90 Nf6dfd2a5e821498497a65859c0b2f5bb schema:affiliation https://www.grid.ac/institutes/grid.418084.1
91 schema:familyName Kieffer
92 schema:givenName J. C.
93 rdf:type schema:Person
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
98 schema:name Other Physical Sciences
99 rdf:type schema:DefinedTerm
100 sg:journal.1312262 schema:issn 0946-2171
101 1432-0649
102 schema:name Applied Physics B
103 rdf:type schema:Periodical
104 sg:pub.10.1038/384335a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007628077
105 https://doi.org/10.1038/384335a0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/nature02939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000739651
108 https://doi.org/10.1038/nature02939
109 rdf:type schema:CreativeWork
110 sg:pub.10.1038/ncomms8568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048337928
111 https://doi.org/10.1038/ncomms8568
112 rdf:type schema:CreativeWork
113 sg:pub.10.1038/nphoton.2008.155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013290893
114 https://doi.org/10.1038/nphoton.2008.155
115 rdf:type schema:CreativeWork
116 sg:pub.10.1038/nphys1789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052746552
117 https://doi.org/10.1038/nphys1789
118 rdf:type schema:CreativeWork
119 sg:pub.10.1038/srep13244 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020702251
120 https://doi.org/10.1038/srep13244
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/srep27633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051610649
123 https://doi.org/10.1038/srep27633
124 rdf:type schema:CreativeWork
125 sg:pub.10.1038/srep27846 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052125078
126 https://doi.org/10.1038/srep27846
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.1146073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057674205
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.3627216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057987837
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.3685464 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058000636
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.4902127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033456330
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1088/1361-6560/aab8d2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101679715
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1088/1367-2630/13/3/033017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038165507
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1093/aob/mcs031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009154260
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1093/treephys/tpq058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011315455
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1103/physreve.95.053208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085547928
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1103/physrevlett.104.025003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756473
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1103/physrevlett.104.025004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756474
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevlett.105.105003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060757400
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevlett.97.225002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060833183
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/revmodphys.85.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015710152
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1107/s0907444913013619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030254711
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1111/j.1365-2389.2012.01487.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009029190
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1111/j.1469-8137.2005.01389.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009128993
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1117/12.2263951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085428615
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1117/12.2319887 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107065761
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1364/ol.36.002426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065230411
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.25152.31 schema:alternateName University of Saskatchewan
169 schema:name Botanical Alternatives Inc., 8B-3110 8th Street E, S7H 0W2, Saskatoon, SK, Canada
170 Global Institute for Food Security, 110 Gymnasium Place, University of Saskatchewan, S7N 4J8, Saskatoon, SK, Canada
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.418084.1 schema:alternateName Institut National de la Recherche Scientifique
173 schema:name Institut National de la Recherche Scientifique, Énergie, Matériaux et Télécommunications, Université du Québec (INRS-EMT), 1650 Lionel Boulet, J3X 1S2, Varennes, QC, Canada
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...