An efficient source of frequency anti-correlated entanglement at telecom wavelength View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-05

AUTHORS

Feiyan Hou, Xiao Xiang, Runai Quan, Mengmeng Wang, Yiwei Zhai, Shaofeng Wang, Tao Liu, Shougang Zhang, Ruifang Dong

ABSTRACT

We demonstrate an efficient generation of frequency anti-correlated entangled photon pairs at telecom wavelength. The fundamental laser is a continuous-wave high-power fiber laser at 1560 nm, through an extracavity frequency doubling system, a 780-nm pump with a power as high as 742 mW is realized. After single-passing through a periodically poled KTiOPO4 (PPKTP) crystal, degenerate down-converted photon pairs are generated. With an overall detection efficiency of 14.8 %, the count rates of the single photons and coincidence of the photon pairs are measured to be 370 kHz and 22 kHz, respectively. The spectra of the signal and idler photons are centered at 1560.23 and 1560.04 nm, while their 3-dB bandwidths being 3.22 nm both. The joint spectrum of the photon pair is observed to be frequency anti-correlated and have a spectral bandwidth of 0.52 nm. According to the ratio of the single-photon spectral bandwidth to the joint spectral bandwidth of the photon pairs, the degree of frequency entanglement is quantified to be 6.19. Based on a Hong–Ou–Mandel interferometric coincidence measurement, a frequency indistinguishability of 95 % is demonstrated. The good agreements with the theoretical estimations show that the inherent extra intensity noise in fiber lasers has little influence on frequency entanglement of the generated photon pairs. More... »

PAGES

128

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00340-016-6402-3

DOI

http://dx.doi.org/10.1007/s00340-016-6402-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016285375


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "Feiyan", 
        "id": "sg:person.010010167305.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010010167305.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Xiao", 
        "id": "sg:person.07671525561.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671525561.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quan", 
        "givenName": "Runai", 
        "id": "sg:person.015120277505.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120277505.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Mengmeng", 
        "id": "sg:person.016513240505.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513240505.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhai", 
        "givenName": "Yiwei", 
        "id": "sg:person.015715660105.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715660105.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shaofeng", 
        "id": "sg:person.010605547705.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605547705.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Tao", 
        "id": "sg:person.01144642416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144642416.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shougang", 
        "id": "sg:person.0616453510.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616453510.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Ruifang", 
        "id": "sg:person.01263026773.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263026773.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-04209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000581773", 
          "https://doi.org/10.1007/978-3-662-04209-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000581773", 
          "https://doi.org/10.1007/978-3-662-04209-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2011.01.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001904811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.613611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003354858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.613611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003354858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.013806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004550007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.013806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004550007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/39/13/s20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005081111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005351030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005351030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.117902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.117902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.023005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013218017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.023005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013218017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.043808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014555970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.043808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014555970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014868537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014868537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019067704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019067704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1797561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021066985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1834461", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027209752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.053817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.053817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-015-6006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034264613", 
          "https://doi.org/10.1007/s00340-015-6006-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.4511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036450975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.55.4511", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036450975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.110504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.110504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2012.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043660576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00702605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044015878", 
          "https://doi.org/10.1007/bf00702605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00702605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044015878", 
          "https://doi.org/10.1007/bf00702605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/11/4/045011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044075457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.022309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047185924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.022309", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047185924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35086525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048825170", 
          "https://doi.org/10.1038/35086525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35086525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048825170", 
          "https://doi.org/10.1038/35086525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050026457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050026457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1379598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-1056/18/6/035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059148542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1674-1056/18/6/035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059148542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.r3429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.r3429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.053810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.053810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.062327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.062327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.043836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.043836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.061804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060509424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.061804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060509424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061147175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/50.19124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061180848"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.26.002390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065101868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.42.006661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065118604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.11.001709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065182433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.012769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065186157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.012546", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065203876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.015959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.027641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065205608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.29.002429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.37.004077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065232724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139644105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698510"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-05", 
    "datePublishedReg": "2016-05-01", 
    "description": "We demonstrate an efficient generation of frequency anti-correlated entangled photon pairs at telecom wavelength. The fundamental laser is a continuous-wave high-power fiber laser at 1560 nm, through an extracavity frequency doubling system, a 780-nm pump with a power as high as 742 mW is realized. After single-passing through a periodically poled KTiOPO4 (PPKTP) crystal, degenerate down-converted photon pairs are generated. With an overall detection efficiency of 14.8 %, the count rates of the single photons and coincidence of the photon pairs are measured to be 370 kHz and 22 kHz, respectively. The spectra of the signal and idler photons are centered at 1560.23 and 1560.04 nm, while their 3-dB bandwidths being 3.22 nm both. The joint spectrum of the photon pair is observed to be frequency anti-correlated and have a spectral bandwidth of 0.52 nm. According to the ratio of the single-photon spectral bandwidth to the joint spectral bandwidth of the photon pairs, the degree of frequency entanglement is quantified to be 6.19. Based on a Hong\u2013Ou\u2013Mandel interferometric coincidence measurement, a frequency indistinguishability of 95 % is demonstrated. The good agreements with the theoretical estimations show that the inherent extra intensity noise in fiber lasers has little influence on frequency entanglement of the generated photon pairs.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00340-016-6402-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7182388", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7014816", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312262", 
        "issn": [
          "0946-2171", 
          "1432-0649"
        ], 
        "name": "Applied Physics B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "name": "An efficient source of frequency anti-correlated entanglement at telecom wavelength", 
    "pagination": "128", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d98ab9d26c6e2f7e80db27898dc5946d8840216afa79d4098ebfc2dd6a5d6f0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00340-016-6402-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016285375"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00340-016-6402-3", 
      "https://app.dimensions.ai/details/publication/pub.1016285375"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88253_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00340-016-6402-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00340-016-6402-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00340-016-6402-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00340-016-6402-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00340-016-6402-3'


 

This table displays all metadata directly associated to this object as RDF triples.

276 TRIPLES      21 PREDICATES      76 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00340-016-6402-3 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author Ndf029843a0254510b9a43035442a1788
4 schema:citation sg:pub.10.1007/978-3-662-04209-0
5 sg:pub.10.1007/bf00702605
6 sg:pub.10.1007/s00340-015-6006-3
7 sg:pub.10.1038/35086525
8 https://doi.org/10.1016/j.asr.2012.07.029
9 https://doi.org/10.1016/j.optcom.2011.01.065
10 https://doi.org/10.1017/cbo9781139644105
11 https://doi.org/10.1063/1.123408
12 https://doi.org/10.1063/1.1379598
13 https://doi.org/10.1063/1.1797561
14 https://doi.org/10.1063/1.1834461
15 https://doi.org/10.1088/0953-4075/39/13/s20
16 https://doi.org/10.1088/1367-2630/11/4/045011
17 https://doi.org/10.1088/1674-1056/18/6/035
18 https://doi.org/10.1103/physreva.52.r3429
19 https://doi.org/10.1103/physreva.55.4511
20 https://doi.org/10.1103/physreva.56.1627
21 https://doi.org/10.1103/physreva.62.053810
22 https://doi.org/10.1103/physreva.65.022309
23 https://doi.org/10.1103/physreva.65.053817
24 https://doi.org/10.1103/physreva.66.043813
25 https://doi.org/10.1103/physreva.69.013806
26 https://doi.org/10.1103/physreva.70.043808
27 https://doi.org/10.1103/physreva.78.062327
28 https://doi.org/10.1103/physreva.79.043836
29 https://doi.org/10.1103/physreva.84.061804
30 https://doi.org/10.1103/physrevlett.100.110504
31 https://doi.org/10.1103/physrevlett.59.2044
32 https://doi.org/10.1103/physrevlett.87.117902
33 https://doi.org/10.1103/physrevlett.91.083601
34 https://doi.org/10.1103/physrevlett.92.127903
35 https://doi.org/10.1103/physrevlett.92.207401
36 https://doi.org/10.1103/physrevlett.93.023005
37 https://doi.org/10.1103/physrevlett.94.083601
38 https://doi.org/10.1103/revmodphys.71.s288
39 https://doi.org/10.1103/revmodphys.81.865
40 https://doi.org/10.1109/3.211
41 https://doi.org/10.1109/50.19124
42 https://doi.org/10.1117/12.613611
43 https://doi.org/10.1126/science.1104149
44 https://doi.org/10.1364/ao.26.002390
45 https://doi.org/10.1364/ao.42.006661
46 https://doi.org/10.1364/oe.11.001709
47 https://doi.org/10.1364/oe.15.012769
48 https://doi.org/10.1364/oe.21.012546
49 https://doi.org/10.1364/oe.21.015959
50 https://doi.org/10.1364/oe.21.027641
51 https://doi.org/10.1364/ol.29.002429
52 https://doi.org/10.1364/ol.37.004077
53 schema:datePublished 2016-05
54 schema:datePublishedReg 2016-05-01
55 schema:description We demonstrate an efficient generation of frequency anti-correlated entangled photon pairs at telecom wavelength. The fundamental laser is a continuous-wave high-power fiber laser at 1560 nm, through an extracavity frequency doubling system, a 780-nm pump with a power as high as 742 mW is realized. After single-passing through a periodically poled KTiOPO4 (PPKTP) crystal, degenerate down-converted photon pairs are generated. With an overall detection efficiency of 14.8 %, the count rates of the single photons and coincidence of the photon pairs are measured to be 370 kHz and 22 kHz, respectively. The spectra of the signal and idler photons are centered at 1560.23 and 1560.04 nm, while their 3-dB bandwidths being 3.22 nm both. The joint spectrum of the photon pair is observed to be frequency anti-correlated and have a spectral bandwidth of 0.52 nm. According to the ratio of the single-photon spectral bandwidth to the joint spectral bandwidth of the photon pairs, the degree of frequency entanglement is quantified to be 6.19. Based on a Hong–Ou–Mandel interferometric coincidence measurement, a frequency indistinguishability of 95 % is demonstrated. The good agreements with the theoretical estimations show that the inherent extra intensity noise in fiber lasers has little influence on frequency entanglement of the generated photon pairs.
56 schema:genre research_article
57 schema:inLanguage en
58 schema:isAccessibleForFree true
59 schema:isPartOf Nc812287e5d97438d87433504654d1471
60 Nd11c90c1fa01488fa32e97cf809d9f58
61 sg:journal.1312262
62 schema:name An efficient source of frequency anti-correlated entanglement at telecom wavelength
63 schema:pagination 128
64 schema:productId N10072fbf823c42be915ca3447a29ebb8
65 N30e61691f86344b6a44f776bfde94dce
66 Naf2060950c0a49dc98cbd9a07ee2d643
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016285375
68 https://doi.org/10.1007/s00340-016-6402-3
69 schema:sdDatePublished 2019-04-11T13:11
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N7e49d5e2d71041808f7f004792a5043a
72 schema:url http://link.springer.com/10.1007/s00340-016-6402-3
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N03bfd3429a094ace894af8b65332ec2c rdf:first sg:person.016513240505.17
77 rdf:rest Nd0b574dc201e4d93b6705c9d1d317ec3
78 N10072fbf823c42be915ca3447a29ebb8 schema:name dimensions_id
79 schema:value pub.1016285375
80 rdf:type schema:PropertyValue
81 N292d9f4c5d264ec99f3f47c98aa2e8e1 rdf:first sg:person.01144642416.43
82 rdf:rest N677c5e0cbac84679b1033e1ec8398a14
83 N30e61691f86344b6a44f776bfde94dce schema:name readcube_id
84 schema:value 4d98ab9d26c6e2f7e80db27898dc5946d8840216afa79d4098ebfc2dd6a5d6f0
85 rdf:type schema:PropertyValue
86 N3b5d1f3b89d3487786d067a011b3c0e2 rdf:first sg:person.015120277505.44
87 rdf:rest N03bfd3429a094ace894af8b65332ec2c
88 N4455ef440d264c14b699dc03fed51023 rdf:first sg:person.01263026773.70
89 rdf:rest rdf:nil
90 N5f7165cc49cf46e6b33db8abd1abd4f5 rdf:first sg:person.07671525561.83
91 rdf:rest N3b5d1f3b89d3487786d067a011b3c0e2
92 N677c5e0cbac84679b1033e1ec8398a14 rdf:first sg:person.0616453510.58
93 rdf:rest N4455ef440d264c14b699dc03fed51023
94 N7e49d5e2d71041808f7f004792a5043a schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 Naf2060950c0a49dc98cbd9a07ee2d643 schema:name doi
97 schema:value 10.1007/s00340-016-6402-3
98 rdf:type schema:PropertyValue
99 Nc812287e5d97438d87433504654d1471 schema:volumeNumber 122
100 rdf:type schema:PublicationVolume
101 Nd0b574dc201e4d93b6705c9d1d317ec3 rdf:first sg:person.015715660105.78
102 rdf:rest Nfd790fc1671148daba337788f75e68fa
103 Nd11c90c1fa01488fa32e97cf809d9f58 schema:issueNumber 5
104 rdf:type schema:PublicationIssue
105 Ndf029843a0254510b9a43035442a1788 rdf:first sg:person.010010167305.53
106 rdf:rest N5f7165cc49cf46e6b33db8abd1abd4f5
107 Nfd790fc1671148daba337788f75e68fa rdf:first sg:person.010605547705.57
108 rdf:rest N292d9f4c5d264ec99f3f47c98aa2e8e1
109 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
110 schema:name Physical Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
113 schema:name Optical Physics
114 rdf:type schema:DefinedTerm
115 sg:grant.7014816 http://pending.schema.org/fundedItem sg:pub.10.1007/s00340-016-6402-3
116 rdf:type schema:MonetaryGrant
117 sg:grant.7182388 http://pending.schema.org/fundedItem sg:pub.10.1007/s00340-016-6402-3
118 rdf:type schema:MonetaryGrant
119 sg:journal.1312262 schema:issn 0946-2171
120 1432-0649
121 schema:name Applied Physics B
122 rdf:type schema:Periodical
123 sg:person.010010167305.53 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
124 schema:familyName Hou
125 schema:givenName Feiyan
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010010167305.53
127 rdf:type schema:Person
128 sg:person.010605547705.57 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
129 schema:familyName Wang
130 schema:givenName Shaofeng
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010605547705.57
132 rdf:type schema:Person
133 sg:person.01144642416.43 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
134 schema:familyName Liu
135 schema:givenName Tao
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144642416.43
137 rdf:type schema:Person
138 sg:person.01263026773.70 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
139 schema:familyName Dong
140 schema:givenName Ruifang
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263026773.70
142 rdf:type schema:Person
143 sg:person.015120277505.44 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
144 schema:familyName Quan
145 schema:givenName Runai
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120277505.44
147 rdf:type schema:Person
148 sg:person.015715660105.78 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
149 schema:familyName Zhai
150 schema:givenName Yiwei
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015715660105.78
152 rdf:type schema:Person
153 sg:person.016513240505.17 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
154 schema:familyName Wang
155 schema:givenName Mengmeng
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513240505.17
157 rdf:type schema:Person
158 sg:person.0616453510.58 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
159 schema:familyName Zhang
160 schema:givenName Shougang
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616453510.58
162 rdf:type schema:Person
163 sg:person.07671525561.83 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
164 schema:familyName Xiang
165 schema:givenName Xiao
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07671525561.83
167 rdf:type schema:Person
168 sg:pub.10.1007/978-3-662-04209-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000581773
169 https://doi.org/10.1007/978-3-662-04209-0
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/bf00702605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044015878
172 https://doi.org/10.1007/bf00702605
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s00340-015-6006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034264613
175 https://doi.org/10.1007/s00340-015-6006-3
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/35086525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048825170
178 https://doi.org/10.1038/35086525
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.asr.2012.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043660576
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.optcom.2011.01.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001904811
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1017/cbo9781139644105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698510
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.123408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687558
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1063/1.1379598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700880
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1063/1.1797561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021066985
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1063/1.1834461 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027209752
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1088/0953-4075/39/13/s20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005081111
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1088/1367-2630/11/4/045011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044075457
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1088/1674-1056/18/6/035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059148542
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physreva.52.r3429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491097
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physreva.55.4511 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036450975
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physreva.56.1627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492927
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreva.62.053810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496697
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreva.65.022309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047185924
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreva.65.053817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028958800
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreva.66.043813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019067704
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physreva.69.013806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004550007
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physreva.70.043808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014555970
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physreva.78.062327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505212
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physreva.79.043836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505706
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physreva.84.061804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060509424
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.100.110504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155799
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.59.2044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795808
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.87.117902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321227
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.91.083601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006196600
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.92.127903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050026457
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.92.207401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005351030
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.93.023005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013218017
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.94.083601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014868537
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/revmodphys.71.s288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839480
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/revmodphys.81.865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548185
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1109/3.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061147175
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1109/50.19124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061180848
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1117/12.613611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003354858
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1126/science.1104149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451106
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1364/ao.26.002390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065101868
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1364/ao.42.006661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065118604
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1364/oe.11.001709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065182433
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1364/oe.15.012769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065186157
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1364/oe.21.012546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065203876
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1364/oe.21.015959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204264
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1364/oe.21.027641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065205608
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1364/ol.29.002429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222191
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1364/ol.37.004077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065232724
269 rdf:type schema:CreativeWork
270 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
271 schema:name Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi’an, China
272 University of Chinese Academy of Sciences, 100049, Beijing, China
273 rdf:type schema:Organization
274 https://www.grid.ac/institutes/grid.458490.4 schema:alternateName National Time Service Center
275 schema:name Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Science, 710600, Xi’an, China
276 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...