Characterization of frequency entanglement under extended phase-matching conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-03

AUTHORS

Runai Quan, Mengmeng Wang, Feiyan Hou, Zhaoyang Tai, Tao Liu, Shougang Zhang, Ruifang Dong

ABSTRACT

Frequency-entangled photon pairs generated by spontaneous parametric down-conversion process under extended phase-matching conditions are found to be prospective resources for quantum information technology. The spectral indistinguishability and the degree of frequency entanglement of the down-converted photon pairs are two key features determining their potential applications. In this paper, both figures of merits are investigated. It is shown that the broadening of the pulsed pump bandwidth, the chirping of the pulse duration, and the lengthening of the nonlinear crystal all degrade the spectral indistinguishability. Furthermore, by changing the above conditions, it is possible to transfer the entanglement type from frequency-correlated to frequency-anticorrelated. For frequency-correlated entanglement, the degree of entanglement grows linearly with the pump bandwidth and the nonlinear crystal length, and quadratically with the chirp parameter of the pulse, while for anticorrelated frequency entanglement, the degree of frequency entanglement turns to behave with an inverse dependence on the above parameters. Guided by such investigations, the generation of desired frequency-entangled source for various quantum information applications can be optimized. More... »

PAGES

431-437

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00340-015-6006-3

DOI

http://dx.doi.org/10.1007/s00340-015-6006-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034264613


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quan", 
        "givenName": "Runai", 
        "id": "sg:person.015120277505.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120277505.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Mengmeng", 
        "id": "sg:person.016513240505.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513240505.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "Feiyan", 
        "id": "sg:person.010010167305.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010010167305.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Chinese Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.410726.6", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi\u2019an, China", 
            "University of Chinese Academy of Sciences, 100049, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tai", 
        "givenName": "Zhaoyang", 
        "id": "sg:person.013363044275.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363044275.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Tao", 
        "id": "sg:person.01144642416.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144642416.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Shougang", 
        "id": "sg:person.0616453510.58", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616453510.58"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Time Service Center", 
          "id": "https://www.grid.ac/institutes/grid.458490.4", 
          "name": [
            "Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dong", 
        "givenName": "Ruifang", 
        "id": "sg:person.01263026773.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263026773.70"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-04209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000581773", 
          "https://doi.org/10.1007/978-3-662-04209-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04209-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000581773", 
          "https://doi.org/10.1007/978-3-662-04209-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optcom.2011.01.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001904811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002548185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003219712", 
          "https://doi.org/10.1038/nature03347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03347", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003219712", 
          "https://doi.org/10.1038/nature03347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.613611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003354858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.613611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003354858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.013806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004550007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.013806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004550007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/39/13/s20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005081111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005351030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.207401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005351030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006196600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.117902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.117902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009321227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.243601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009592943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.243601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009592943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.062322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012608694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.87.062322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012608694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.023005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013218017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.93.023005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013218017"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.043808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014555970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.70.043808", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014555970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014868537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.083601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014868537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019067704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.66.043813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019067704"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.053810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019569885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.67.053810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019569885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1797561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021066985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.052325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025653260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.83.052325", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025653260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028214597", 
          "https://doi.org/10.1038/nature11472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.053817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.65.053817", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028958800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030071759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1370", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030071759"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031923929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.69.052117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031923929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.042321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038170085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.80.042321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038170085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.110504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.100.110504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042155799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asr.2012.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043660576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35086525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048825170", 
          "https://doi.org/10.1038/35086525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35086525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048825170", 
          "https://doi.org/10.1038/35086525"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050026457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.127903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050026457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687558"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1379598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057700880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.r3429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.r3429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.56.1627", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060492927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.r2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.60.r2622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060495793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.053810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.62.053810", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060496697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.031801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.73.031801", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060502021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.062327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.78.062327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.043836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.79.043836", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060505706"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.061804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060509424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.84.061804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060509424"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060795808"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.286", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.s288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1104149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.26.002390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065101868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.42.006661", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065118604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.14.002805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065183006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.015959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.29.002429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222191"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.000875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.37.004077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065232724"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9781139644105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098698510"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-03", 
    "datePublishedReg": "2015-03-01", 
    "description": "Frequency-entangled photon pairs generated by spontaneous parametric down-conversion process under extended phase-matching conditions are found to be prospective resources for quantum information technology. The spectral indistinguishability and the degree of frequency entanglement of the down-converted photon pairs are two key features determining their potential applications. In this paper, both figures of merits are investigated. It is shown that the broadening of the pulsed pump bandwidth, the chirping of the pulse duration, and the lengthening of the nonlinear crystal all degrade the spectral indistinguishability. Furthermore, by changing the above conditions, it is possible to transfer the entanglement type from frequency-correlated to frequency-anticorrelated. For frequency-correlated entanglement, the degree of entanglement grows linearly with the pump bandwidth and the nonlinear crystal length, and quadratically with the chirp parameter of the pulse, while for anticorrelated frequency entanglement, the degree of frequency entanglement turns to behave with an inverse dependence on the above parameters. Guided by such investigations, the generation of desired frequency-entangled source for various quantum information applications can be optimized.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00340-015-6006-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7182388", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.7014816", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1312262", 
        "issn": [
          "0946-2171", 
          "1432-0649"
        ], 
        "name": "Applied Physics B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "118"
      }
    ], 
    "name": "Characterization of frequency entanglement under extended phase-matching conditions", 
    "pagination": "431-437", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a3391c9409e37df29e6909dbd03ee5ee211c1931dbec0ab916076143cb197cd7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00340-015-6006-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034264613"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00340-015-6006-3", 
      "https://app.dimensions.ai/details/publication/pub.1034264613"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000489.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00340-015-6006-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00340-015-6006-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00340-015-6006-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00340-015-6006-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00340-015-6006-3'


 

This table displays all metadata directly associated to this object as RDF triples.

268 TRIPLES      21 PREDICATES      78 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00340-015-6006-3 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N908daeb8cbce4c1eab02dbb537e9e3ca
4 schema:citation sg:pub.10.1007/978-3-662-04209-0
5 sg:pub.10.1038/35086525
6 sg:pub.10.1038/nature03347
7 sg:pub.10.1038/nature11472
8 https://doi.org/10.1016/j.asr.2012.07.029
9 https://doi.org/10.1016/j.optcom.2011.01.065
10 https://doi.org/10.1017/cbo9781139644105
11 https://doi.org/10.1063/1.123408
12 https://doi.org/10.1063/1.1379598
13 https://doi.org/10.1063/1.1797561
14 https://doi.org/10.1088/0953-4075/39/13/s20
15 https://doi.org/10.1103/physreva.52.r3429
16 https://doi.org/10.1103/physreva.56.1534
17 https://doi.org/10.1103/physreva.56.1627
18 https://doi.org/10.1103/physreva.60.r2622
19 https://doi.org/10.1103/physreva.62.053810
20 https://doi.org/10.1103/physreva.65.053817
21 https://doi.org/10.1103/physreva.66.043813
22 https://doi.org/10.1103/physreva.67.053810
23 https://doi.org/10.1103/physreva.69.013806
24 https://doi.org/10.1103/physreva.69.052117
25 https://doi.org/10.1103/physreva.70.043808
26 https://doi.org/10.1103/physreva.73.031801
27 https://doi.org/10.1103/physreva.78.062327
28 https://doi.org/10.1103/physreva.79.043836
29 https://doi.org/10.1103/physreva.80.042321
30 https://doi.org/10.1103/physreva.83.052325
31 https://doi.org/10.1103/physreva.84.061804
32 https://doi.org/10.1103/physreva.87.062322
33 https://doi.org/10.1103/physrevlett.100.110504
34 https://doi.org/10.1103/physrevlett.59.2044
35 https://doi.org/10.1103/physrevlett.85.286
36 https://doi.org/10.1103/physrevlett.86.1370
37 https://doi.org/10.1103/physrevlett.87.117902
38 https://doi.org/10.1103/physrevlett.91.083601
39 https://doi.org/10.1103/physrevlett.92.127903
40 https://doi.org/10.1103/physrevlett.92.207401
41 https://doi.org/10.1103/physrevlett.93.023005
42 https://doi.org/10.1103/physrevlett.94.083601
43 https://doi.org/10.1103/physrevlett.99.243601
44 https://doi.org/10.1103/revmodphys.71.s288
45 https://doi.org/10.1103/revmodphys.81.865
46 https://doi.org/10.1117/12.613611
47 https://doi.org/10.1126/science.1104149
48 https://doi.org/10.1364/ao.26.002390
49 https://doi.org/10.1364/ao.42.006661
50 https://doi.org/10.1364/oe.14.002805
51 https://doi.org/10.1364/oe.21.015959
52 https://doi.org/10.1364/ol.29.002429
53 https://doi.org/10.1364/ol.33.000875
54 https://doi.org/10.1364/ol.37.004077
55 schema:datePublished 2015-03
56 schema:datePublishedReg 2015-03-01
57 schema:description Frequency-entangled photon pairs generated by spontaneous parametric down-conversion process under extended phase-matching conditions are found to be prospective resources for quantum information technology. The spectral indistinguishability and the degree of frequency entanglement of the down-converted photon pairs are two key features determining their potential applications. In this paper, both figures of merits are investigated. It is shown that the broadening of the pulsed pump bandwidth, the chirping of the pulse duration, and the lengthening of the nonlinear crystal all degrade the spectral indistinguishability. Furthermore, by changing the above conditions, it is possible to transfer the entanglement type from frequency-correlated to frequency-anticorrelated. For frequency-correlated entanglement, the degree of entanglement grows linearly with the pump bandwidth and the nonlinear crystal length, and quadratically with the chirp parameter of the pulse, while for anticorrelated frequency entanglement, the degree of frequency entanglement turns to behave with an inverse dependence on the above parameters. Guided by such investigations, the generation of desired frequency-entangled source for various quantum information applications can be optimized.
58 schema:genre research_article
59 schema:inLanguage en
60 schema:isAccessibleForFree false
61 schema:isPartOf N2185f35bf5ae42c383fcdb1ef9635c18
62 N2994aa8274724788a061c02f92db1e7f
63 sg:journal.1312262
64 schema:name Characterization of frequency entanglement under extended phase-matching conditions
65 schema:pagination 431-437
66 schema:productId N13981346e625476d8e1909205f344617
67 N32efbb0b0bf74a5598b9ac5831b7e20c
68 Nee78532d63c042beb09f5e3a1db20dde
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034264613
70 https://doi.org/10.1007/s00340-015-6006-3
71 schema:sdDatePublished 2019-04-10T20:42
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher Na99f37456c884320a356982d40decd28
74 schema:url http://link.springer.com/10.1007/s00340-015-6006-3
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N038565d96f764c8f991e91dd9364ecd8 rdf:first sg:person.01263026773.70
79 rdf:rest rdf:nil
80 N0560bf27b0404327abba25cc222211d5 rdf:first sg:person.0616453510.58
81 rdf:rest N038565d96f764c8f991e91dd9364ecd8
82 N13981346e625476d8e1909205f344617 schema:name doi
83 schema:value 10.1007/s00340-015-6006-3
84 rdf:type schema:PropertyValue
85 N166e42c8b48549088150bd2cb5543815 rdf:first sg:person.013363044275.57
86 rdf:rest N6139a90529ff4161b8e712e8ff772f8e
87 N2185f35bf5ae42c383fcdb1ef9635c18 schema:volumeNumber 118
88 rdf:type schema:PublicationVolume
89 N2994aa8274724788a061c02f92db1e7f schema:issueNumber 3
90 rdf:type schema:PublicationIssue
91 N32efbb0b0bf74a5598b9ac5831b7e20c schema:name dimensions_id
92 schema:value pub.1034264613
93 rdf:type schema:PropertyValue
94 N5ae04d1e99404cec9878aa280502a4b4 rdf:first sg:person.010010167305.53
95 rdf:rest N166e42c8b48549088150bd2cb5543815
96 N6139a90529ff4161b8e712e8ff772f8e rdf:first sg:person.01144642416.43
97 rdf:rest N0560bf27b0404327abba25cc222211d5
98 N908daeb8cbce4c1eab02dbb537e9e3ca rdf:first sg:person.015120277505.44
99 rdf:rest Nca797123304b4a18984928a06fe1794d
100 Na99f37456c884320a356982d40decd28 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nca797123304b4a18984928a06fe1794d rdf:first sg:person.016513240505.17
103 rdf:rest N5ae04d1e99404cec9878aa280502a4b4
104 Nee78532d63c042beb09f5e3a1db20dde schema:name readcube_id
105 schema:value a3391c9409e37df29e6909dbd03ee5ee211c1931dbec0ab916076143cb197cd7
106 rdf:type schema:PropertyValue
107 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
108 schema:name Physical Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
111 schema:name Optical Physics
112 rdf:type schema:DefinedTerm
113 sg:grant.7014816 http://pending.schema.org/fundedItem sg:pub.10.1007/s00340-015-6006-3
114 rdf:type schema:MonetaryGrant
115 sg:grant.7182388 http://pending.schema.org/fundedItem sg:pub.10.1007/s00340-015-6006-3
116 rdf:type schema:MonetaryGrant
117 sg:journal.1312262 schema:issn 0946-2171
118 1432-0649
119 schema:name Applied Physics B
120 rdf:type schema:Periodical
121 sg:person.010010167305.53 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
122 schema:familyName Hou
123 schema:givenName Feiyan
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010010167305.53
125 rdf:type schema:Person
126 sg:person.01144642416.43 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
127 schema:familyName Liu
128 schema:givenName Tao
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144642416.43
130 rdf:type schema:Person
131 sg:person.01263026773.70 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
132 schema:familyName Dong
133 schema:givenName Ruifang
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01263026773.70
135 rdf:type schema:Person
136 sg:person.013363044275.57 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
137 schema:familyName Tai
138 schema:givenName Zhaoyang
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013363044275.57
140 rdf:type schema:Person
141 sg:person.015120277505.44 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
142 schema:familyName Quan
143 schema:givenName Runai
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015120277505.44
145 rdf:type schema:Person
146 sg:person.016513240505.17 schema:affiliation https://www.grid.ac/institutes/grid.410726.6
147 schema:familyName Wang
148 schema:givenName Mengmeng
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016513240505.17
150 rdf:type schema:Person
151 sg:person.0616453510.58 schema:affiliation https://www.grid.ac/institutes/grid.458490.4
152 schema:familyName Zhang
153 schema:givenName Shougang
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616453510.58
155 rdf:type schema:Person
156 sg:pub.10.1007/978-3-662-04209-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000581773
157 https://doi.org/10.1007/978-3-662-04209-0
158 rdf:type schema:CreativeWork
159 sg:pub.10.1038/35086525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048825170
160 https://doi.org/10.1038/35086525
161 rdf:type schema:CreativeWork
162 sg:pub.10.1038/nature03347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003219712
163 https://doi.org/10.1038/nature03347
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/nature11472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028214597
166 https://doi.org/10.1038/nature11472
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.asr.2012.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043660576
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.optcom.2011.01.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001904811
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1017/cbo9781139644105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098698510
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.123408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687558
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.1379598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057700880
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.1797561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021066985
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/0953-4075/39/13/s20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005081111
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1103/physreva.52.r3429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491097
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1103/physreva.56.1534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492913
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1103/physreva.56.1627 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060492927
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1103/physreva.60.r2622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060495793
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physreva.62.053810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060496697
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physreva.65.053817 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028958800
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physreva.66.043813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019067704
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physreva.67.053810 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019569885
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/physreva.69.013806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004550007
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1103/physreva.69.052117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031923929
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1103/physreva.70.043808 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014555970
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1103/physreva.73.031801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060502021
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1103/physreva.78.062327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505212
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1103/physreva.79.043836 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060505706
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1103/physreva.80.042321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038170085
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1103/physreva.83.052325 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025653260
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1103/physreva.84.061804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060509424
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1103/physreva.87.062322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012608694
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1103/physrevlett.100.110504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042155799
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1103/physrevlett.59.2044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060795808
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1103/physrevlett.85.286 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821929
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1103/physrevlett.86.1370 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030071759
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1103/physrevlett.87.117902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009321227
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1103/physrevlett.91.083601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006196600
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1103/physrevlett.92.127903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050026457
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1103/physrevlett.92.207401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005351030
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1103/physrevlett.93.023005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013218017
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1103/physrevlett.94.083601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014868537
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1103/physrevlett.99.243601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009592943
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1103/revmodphys.71.s288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839480
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1103/revmodphys.81.865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002548185
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1117/12.613611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003354858
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1126/science.1104149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451106
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1364/ao.26.002390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065101868
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1364/ao.42.006661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065118604
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1364/oe.14.002805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065183006
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1364/oe.21.015959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204264
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1364/ol.29.002429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222191
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1364/ol.33.000875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225960
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1364/ol.37.004077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065232724
261 rdf:type schema:CreativeWork
262 https://www.grid.ac/institutes/grid.410726.6 schema:alternateName University of Chinese Academy of Sciences
263 schema:name Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi’an, China
264 University of Chinese Academy of Sciences, 100049, Beijing, China
265 rdf:type schema:Organization
266 https://www.grid.ac/institutes/grid.458490.4 schema:alternateName National Time Service Center
267 schema:name Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, 710600, Xi’an, China
268 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...