Probing vacuum birefringence by phase-contrast Fourier imaging under fields of high-intensity lasers View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-09

AUTHORS

K. Homma, D. Habs, T. Tajima

ABSTRACT

In vacuum high-intensity lasers can cause photon–photon interaction via the process of virtual vacuum polarization which may be measured by the phase velocity shift of photons across intense fields. In the optical frequency domain, the photon–photon interaction is polarization-mediated described by the Euler–Heisenberg effective action. This theory predicts the vacuum birefringence or polarization dependence of the phase velocity shift arising from nonlinear properties in quantum electrodynamics (QED). We suggest a method to measure the vacuum birefringence under intense optical laser fields based on the absolute phase velocity shift by phase-contrast Fourier imaging. The method may serve for observing effects even beyond the QED vacuum polarization. More... »

PAGES

769

References to SciGraph publications

Journal

TITLE

Applied Physics B

ISSUE

4

VOLUME

104

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00340-011-4568-2

    DOI

    http://dx.doi.org/10.1007/s00340-011-4568-2

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023583779


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Graduate School of Science, Hiroshima University, 739-8526, Kagamiyama, Higashi-Hiroshima, Japan", 
                "Fakult\u00e4t f\u00fcr Physik, Ludwig-Maximilians Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Homma", 
            "givenName": "K.", 
            "id": "sg:person.07537625311.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537625311.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Fakult\u00e4t f\u00fcr Physik, Ludwig-Maximilians Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Habs", 
            "givenName": "D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Fakult\u00e4t f\u00fcr Physik, Ludwig-Maximilians Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tajima", 
            "givenName": "T.", 
            "id": "sg:person.016710216215.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1103/physrevlett.97.083603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009368047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.083603", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009368047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02735895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011606040", 
              "https://doi.org/10.1007/bf02735895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02735895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011606040", 
              "https://doi.org/10.1007/bf02735895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optcom.2010.10.054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017498659"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01343663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018417263", 
              "https://doi.org/10.1007/bf01343663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0370-1573(99)00083-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022092215"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physleta.2010.01.051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027187396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029680473", 
              "https://doi.org/10.1038/nphoton.2009.261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.261", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029680473", 
              "https://doi.org/10.1038/nphoton.2009.261"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0003-4916(72)90191-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031479884"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.70.033801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033494426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.70.033801", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033494426"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.130404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035101559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.130404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035101559"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2007.03.034", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036817709"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.80.111301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044370719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.80.111301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044370719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2008.07.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045232760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02735534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045719533", 
              "https://doi.org/10.1007/bf02735534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02735534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045719533", 
              "https://doi.org/10.1007/bf02735534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.032006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047195805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.032006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047195805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2009-00113-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048530472", 
              "https://doi.org/10.1140/epjd/e2009-00113-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2009-00113-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048530472", 
              "https://doi.org/10.1140/epjd/e2009-00113-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.82.664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060457770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.82.664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060457770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.83.776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060458254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.83.776", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060458254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.4310/atmp.1998.v2.n2.a1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1072456893"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-09", 
        "datePublishedReg": "2011-09-01", 
        "description": "In vacuum high-intensity lasers can cause photon\u2013photon interaction via the process of virtual vacuum polarization which may be measured by the phase velocity shift of photons across intense fields. In the optical frequency domain, the photon\u2013photon interaction is polarization-mediated described by the Euler\u2013Heisenberg effective action. This theory predicts the vacuum birefringence or polarization dependence of the phase velocity shift arising from nonlinear properties in quantum electrodynamics (QED). We suggest a method to measure the vacuum birefringence under intense optical laser fields based on the absolute phase velocity shift by phase-contrast Fourier imaging. The method may serve for observing effects even beyond the QED vacuum polarization.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00340-011-4568-2", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6024669", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1312262", 
            "issn": [
              "0946-2171", 
              "1432-0649"
            ], 
            "name": "Applied Physics B", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "104"
          }
        ], 
        "name": "Probing vacuum birefringence by phase-contrast Fourier imaging under fields of high-intensity lasers", 
        "pagination": "769", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "705c1e8609ad68d9a7555e4303b1c001e29b7326ffa6008302b9d5e5f2f1da1c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00340-011-4568-2"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023583779"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00340-011-4568-2", 
          "https://app.dimensions.ai/details/publication/pub.1023583779"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:19", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000488.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00340-011-4568-2"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4568-2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4568-2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4568-2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4568-2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    139 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00340-011-4568-2 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author N90e30cffffba4c379426c6a719e429a0
    4 schema:citation sg:pub.10.1007/bf01343663
    5 sg:pub.10.1007/bf02735534
    6 sg:pub.10.1007/bf02735895
    7 sg:pub.10.1038/nphoton.2009.261
    8 sg:pub.10.1140/epjd/e2009-00113-x
    9 https://doi.org/10.1016/0003-4916(72)90191-1
    10 https://doi.org/10.1016/j.nuclphysb.2007.03.034
    11 https://doi.org/10.1016/j.optcom.2010.10.054
    12 https://doi.org/10.1016/j.physleta.2010.01.051
    13 https://doi.org/10.1016/j.physletb.2008.07.018
    14 https://doi.org/10.1016/s0370-1573(99)00083-6
    15 https://doi.org/10.1103/physrev.82.664
    16 https://doi.org/10.1103/physrev.83.776
    17 https://doi.org/10.1103/physreva.70.033801
    18 https://doi.org/10.1103/physrevd.77.032006
    19 https://doi.org/10.1103/physrevd.80.111301
    20 https://doi.org/10.1103/physrevlett.101.130404
    21 https://doi.org/10.1103/physrevlett.97.083603
    22 https://doi.org/10.4310/atmp.1998.v2.n2.a1
    23 schema:datePublished 2011-09
    24 schema:datePublishedReg 2011-09-01
    25 schema:description In vacuum high-intensity lasers can cause photon–photon interaction via the process of virtual vacuum polarization which may be measured by the phase velocity shift of photons across intense fields. In the optical frequency domain, the photon–photon interaction is polarization-mediated described by the Euler–Heisenberg effective action. This theory predicts the vacuum birefringence or polarization dependence of the phase velocity shift arising from nonlinear properties in quantum electrodynamics (QED). We suggest a method to measure the vacuum birefringence under intense optical laser fields based on the absolute phase velocity shift by phase-contrast Fourier imaging. The method may serve for observing effects even beyond the QED vacuum polarization.
    26 schema:genre research_article
    27 schema:inLanguage en
    28 schema:isAccessibleForFree true
    29 schema:isPartOf N1163353eed9f4239837b50570b217ddf
    30 Naf164082d8b048e1917bc018fdaec65a
    31 sg:journal.1312262
    32 schema:name Probing vacuum birefringence by phase-contrast Fourier imaging under fields of high-intensity lasers
    33 schema:pagination 769
    34 schema:productId N04fb241e612d447386d1f0fe16c9aa17
    35 Nc2cd87d004814f6191c7986808b688cb
    36 Nf177737bd5ad4045835bddb84213215b
    37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023583779
    38 https://doi.org/10.1007/s00340-011-4568-2
    39 schema:sdDatePublished 2019-04-10T23:19
    40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    41 schema:sdPublisher N4a6c25260ed24d1fba53fcd1b54d2b83
    42 schema:url http://link.springer.com/10.1007/s00340-011-4568-2
    43 sgo:license sg:explorer/license/
    44 sgo:sdDataset articles
    45 rdf:type schema:ScholarlyArticle
    46 N04fb241e612d447386d1f0fe16c9aa17 schema:name dimensions_id
    47 schema:value pub.1023583779
    48 rdf:type schema:PropertyValue
    49 N1163353eed9f4239837b50570b217ddf schema:issueNumber 4
    50 rdf:type schema:PublicationIssue
    51 N394ccaa125f54f83bb056d9c1d77b7a7 rdf:first sg:person.016710216215.40
    52 rdf:rest rdf:nil
    53 N4398cf1c0bbc437f9db886f4ee5315f6 rdf:first Neeafe0e10e31463f8fd44075bc48322c
    54 rdf:rest N394ccaa125f54f83bb056d9c1d77b7a7
    55 N4a6c25260ed24d1fba53fcd1b54d2b83 schema:name Springer Nature - SN SciGraph project
    56 rdf:type schema:Organization
    57 N90e30cffffba4c379426c6a719e429a0 rdf:first sg:person.07537625311.95
    58 rdf:rest N4398cf1c0bbc437f9db886f4ee5315f6
    59 Naf164082d8b048e1917bc018fdaec65a schema:volumeNumber 104
    60 rdf:type schema:PublicationVolume
    61 Nc2cd87d004814f6191c7986808b688cb schema:name readcube_id
    62 schema:value 705c1e8609ad68d9a7555e4303b1c001e29b7326ffa6008302b9d5e5f2f1da1c
    63 rdf:type schema:PropertyValue
    64 Neeafe0e10e31463f8fd44075bc48322c schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    65 schema:familyName Habs
    66 schema:givenName D.
    67 rdf:type schema:Person
    68 Nf177737bd5ad4045835bddb84213215b schema:name doi
    69 schema:value 10.1007/s00340-011-4568-2
    70 rdf:type schema:PropertyValue
    71 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Physical Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Other Physical Sciences
    76 rdf:type schema:DefinedTerm
    77 sg:grant.6024669 http://pending.schema.org/fundedItem sg:pub.10.1007/s00340-011-4568-2
    78 rdf:type schema:MonetaryGrant
    79 sg:journal.1312262 schema:issn 0946-2171
    80 1432-0649
    81 schema:name Applied Physics B
    82 rdf:type schema:Periodical
    83 sg:person.016710216215.40 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    84 schema:familyName Tajima
    85 schema:givenName T.
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40
    87 rdf:type schema:Person
    88 sg:person.07537625311.95 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    89 schema:familyName Homma
    90 schema:givenName K.
    91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537625311.95
    92 rdf:type schema:Person
    93 sg:pub.10.1007/bf01343663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018417263
    94 https://doi.org/10.1007/bf01343663
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/bf02735534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045719533
    97 https://doi.org/10.1007/bf02735534
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/bf02735895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011606040
    100 https://doi.org/10.1007/bf02735895
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1038/nphoton.2009.261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029680473
    103 https://doi.org/10.1038/nphoton.2009.261
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1140/epjd/e2009-00113-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048530472
    106 https://doi.org/10.1140/epjd/e2009-00113-x
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/0003-4916(72)90191-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031479884
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.nuclphysb.2007.03.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036817709
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.optcom.2010.10.054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017498659
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.physleta.2010.01.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027187396
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.physletb.2008.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045232760
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/s0370-1573(99)00083-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022092215
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1103/physrev.82.664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060457770
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1103/physrev.83.776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060458254
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1103/physreva.70.033801 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033494426
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1103/physrevd.77.032006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047195805
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrevd.80.111301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044370719
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrevlett.101.130404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035101559
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physrevlett.97.083603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009368047
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.4310/atmp.1998.v2.n2.a1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072456893
    135 rdf:type schema:CreativeWork
    136 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
    137 schema:name Fakultät für Physik, Ludwig-Maximilians Universität München, 85748, Garching, Germany
    138 Graduate School of Science, Hiroshima University, 739-8526, Kagamiyama, Higashi-Hiroshima, Japan
    139 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...