Probing the semi-macroscopic vacuum by higher-harmonic generation under focused intense laser fields View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-01

AUTHORS

K. Homma, D. Habs, T. Tajima

ABSTRACT

The invention of the laser immediately enabled the detection of nonlinear photon–matter interactions, as manifested for example by Franken et al.’s detection of second-harmonic generation. With the recent advancement in high-power, high-energy lasers and the examples of nonlinearity studies of the laser-matter interaction by virtue of properly arranging lasers and detectors, we envision the possibility of probing nonlinearities of the photon interaction in vacuum over substantial space-time scales, compared to the microscopic scale provided by high-energy accelerators. Specifically, we introduce the photon–photon interaction in a quasi-parallel colliding system and the detection of higher harmonics in that system. The method proposed should realize a far greater sensitivity of probing possible low-mass and weakly coupling fields that have been postulated. With the availability of a large number of coherent photons, we suggest a scheme for the detection of higher harmonics via the averaged resonant production and decay of these postulated fields within the uncertainty of the center-of-mass energy between incoming laser photons. The method carves out a substantial swath of new experimental parameter regimes on the coupling of these fields to photons, under appropriate laser technologies, even weaker than that of gravity in the mass range well below 1 eV. More... »

PAGES

229-240

References to SciGraph publications

Journal

TITLE

Applied Physics B

ISSUE

1

VOLUME

106

From Grant

  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00340-011-4567-3

    DOI

    http://dx.doi.org/10.1007/s00340-011-4567-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1026119309


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Other Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Graduate School of Science, Hiroshima University, Kagamiyama, 739-8526, Higashi-Hiroshima, Japan", 
                "Fakult\u00e4t f\u00fcr Physik, Ludwig Maximilians Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Homma", 
            "givenName": "K.", 
            "id": "sg:person.07537625311.95", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537625311.95"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Fakult\u00e4t f\u00fcr Physik, Ludwig Maximilians Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Habs", 
            "givenName": "D.", 
            "id": "sg:person.07714114705.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714114705.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Ludwig Maximilian University of Munich", 
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "name": [
                "Fakult\u00e4t f\u00fcr Physik, Ludwig Maximilians Universit\u00e4t M\u00fcnchen, 85748, Garching, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tajima", 
            "givenName": "T.", 
            "id": "sg:person.016710216215.40", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/34124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002599071", 
              "https://doi.org/10.1038/34124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/34124", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002599071", 
              "https://doi.org/10.1038/34124"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.032013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003909999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.032013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003909999"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.092003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004280807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.78.092003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004280807"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0030-4018(96)00317-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018185499"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01343663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018417263", 
              "https://doi.org/10.1007/bf01343663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2010)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022085186", 
              "https://doi.org/10.1007/jhep10(2010)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2010)022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022085186", 
              "https://doi.org/10.1007/jhep10(2010)022"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.190403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022382669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.99.190403", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022382669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.030402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029961777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.102.030402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029961777"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3204556", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032458175"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.045016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036057631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.73.045016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036057631"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.140402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042992944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.97.140402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042992944"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2008.07.018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045232760"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.032006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047195805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.77.032006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047195805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.physletb.2008.03.076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047401312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.120401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047524254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.101.120401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047524254"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2009-00107-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050474944", 
              "https://doi.org/10.1140/epjd/e2009-00107-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1140/epjd/e2009-00107-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050474944", 
              "https://doi.org/10.1140/epjd/e2009-00107-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91377-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051047074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0370-2693(86)91377-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051047074"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/300499", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058608115"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1086/377226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1058670318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.82.664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060457770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.82.664", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060457770"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.99.1691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060464138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrev.99.1691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060464138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.033822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060504980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physreva.78.033822", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060504980"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.3707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevd.47.3707", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060701198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.080402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.100.080402", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060752970"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.19.1264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060770126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.19.1264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060770126"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.7.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060806120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.7.118", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060806120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839613"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/revmodphys.78.309", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060839613"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-01", 
        "datePublishedReg": "2012-01-01", 
        "description": "The invention of the laser immediately enabled the detection of nonlinear photon\u2013matter interactions, as manifested for example by Franken et al.\u2019s detection of second-harmonic generation. With the recent advancement in high-power, high-energy lasers and the examples of nonlinearity studies of the laser-matter interaction by virtue of properly arranging lasers and detectors, we envision the possibility of probing nonlinearities of the photon interaction in vacuum over substantial space-time scales, compared to the microscopic scale provided by high-energy accelerators. Specifically, we introduce the photon\u2013photon interaction in a quasi-parallel colliding system and the detection of higher harmonics in that system. The method proposed should realize a far greater sensitivity of probing possible low-mass and weakly coupling fields that have been postulated. With the availability of a large number of coherent photons, we suggest a scheme for the detection of higher harmonics via the averaged resonant production and decay of these postulated fields within the uncertainty of the center-of-mass energy between incoming laser photons. The method carves out a substantial swath of new experimental parameter regimes on the coupling of these fields to photons, under appropriate laser technologies, even weaker than that of gravity in the mass range well below 1 eV.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00340-011-4567-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6024669", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1312262", 
            "issn": [
              "0946-2171", 
              "1432-0649"
            ], 
            "name": "Applied Physics B", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "106"
          }
        ], 
        "name": "Probing the semi-macroscopic vacuum by higher-harmonic generation under focused intense laser fields", 
        "pagination": "229-240", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7c6e7e93463b7faad8d69606cf855a1baab05b09c9475b1832c2cadef262d3bb"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00340-011-4567-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1026119309"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00340-011-4567-3", 
          "https://app.dimensions.ai/details/publication/pub.1026119309"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:55", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000488.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s00340-011-4567-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4567-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4567-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4567-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00340-011-4567-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    163 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00340-011-4567-3 schema:about anzsrc-for:02
    2 anzsrc-for:0299
    3 schema:author Nb4b316b4908042a5b04ef6a928b55cd6
    4 schema:citation sg:pub.10.1007/bf01343663
    5 sg:pub.10.1007/jhep10(2010)022
    6 sg:pub.10.1038/34124
    7 sg:pub.10.1140/epjd/e2009-00107-8
    8 https://doi.org/10.1016/0030-4018(96)00317-3
    9 https://doi.org/10.1016/0370-2693(86)91377-8
    10 https://doi.org/10.1016/j.physletb.2008.03.076
    11 https://doi.org/10.1016/j.physletb.2008.07.018
    12 https://doi.org/10.1063/1.3204556
    13 https://doi.org/10.1086/300499
    14 https://doi.org/10.1086/377226
    15 https://doi.org/10.1103/physrev.82.664
    16 https://doi.org/10.1103/physrev.99.1691
    17 https://doi.org/10.1103/physreva.78.033822
    18 https://doi.org/10.1103/physrevd.47.3707
    19 https://doi.org/10.1103/physrevd.73.045016
    20 https://doi.org/10.1103/physrevd.77.032006
    21 https://doi.org/10.1103/physrevd.78.032013
    22 https://doi.org/10.1103/physrevd.78.092003
    23 https://doi.org/10.1103/physrevlett.100.080402
    24 https://doi.org/10.1103/physrevlett.101.120401
    25 https://doi.org/10.1103/physrevlett.102.030402
    26 https://doi.org/10.1103/physrevlett.19.1264
    27 https://doi.org/10.1103/physrevlett.7.118
    28 https://doi.org/10.1103/physrevlett.97.140402
    29 https://doi.org/10.1103/physrevlett.99.190403
    30 https://doi.org/10.1103/revmodphys.78.309
    31 schema:datePublished 2012-01
    32 schema:datePublishedReg 2012-01-01
    33 schema:description The invention of the laser immediately enabled the detection of nonlinear photon–matter interactions, as manifested for example by Franken et al.’s detection of second-harmonic generation. With the recent advancement in high-power, high-energy lasers and the examples of nonlinearity studies of the laser-matter interaction by virtue of properly arranging lasers and detectors, we envision the possibility of probing nonlinearities of the photon interaction in vacuum over substantial space-time scales, compared to the microscopic scale provided by high-energy accelerators. Specifically, we introduce the photon–photon interaction in a quasi-parallel colliding system and the detection of higher harmonics in that system. The method proposed should realize a far greater sensitivity of probing possible low-mass and weakly coupling fields that have been postulated. With the availability of a large number of coherent photons, we suggest a scheme for the detection of higher harmonics via the averaged resonant production and decay of these postulated fields within the uncertainty of the center-of-mass energy between incoming laser photons. The method carves out a substantial swath of new experimental parameter regimes on the coupling of these fields to photons, under appropriate laser technologies, even weaker than that of gravity in the mass range well below 1 eV.
    34 schema:genre research_article
    35 schema:inLanguage en
    36 schema:isAccessibleForFree true
    37 schema:isPartOf N3cc0c047596545f0b1e1ffd9e33bbb0f
    38 Nd45401470b0446caa78796c97237145b
    39 sg:journal.1312262
    40 schema:name Probing the semi-macroscopic vacuum by higher-harmonic generation under focused intense laser fields
    41 schema:pagination 229-240
    42 schema:productId N07df71ee37844fbb99a859a7338080d8
    43 N2740c242d7594a85b06d98dcfb9f3084
    44 N4968b82a55544bd89f863ebad6441d2a
    45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026119309
    46 https://doi.org/10.1007/s00340-011-4567-3
    47 schema:sdDatePublished 2019-04-10T14:55
    48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    49 schema:sdPublisher N33eea912c5b340b286ed85d6d2d49194
    50 schema:url http://link.springer.com/10.1007/s00340-011-4567-3
    51 sgo:license sg:explorer/license/
    52 sgo:sdDataset articles
    53 rdf:type schema:ScholarlyArticle
    54 N07df71ee37844fbb99a859a7338080d8 schema:name doi
    55 schema:value 10.1007/s00340-011-4567-3
    56 rdf:type schema:PropertyValue
    57 N2740c242d7594a85b06d98dcfb9f3084 schema:name dimensions_id
    58 schema:value pub.1026119309
    59 rdf:type schema:PropertyValue
    60 N33eea912c5b340b286ed85d6d2d49194 schema:name Springer Nature - SN SciGraph project
    61 rdf:type schema:Organization
    62 N3cc0c047596545f0b1e1ffd9e33bbb0f schema:issueNumber 1
    63 rdf:type schema:PublicationIssue
    64 N4968b82a55544bd89f863ebad6441d2a schema:name readcube_id
    65 schema:value 7c6e7e93463b7faad8d69606cf855a1baab05b09c9475b1832c2cadef262d3bb
    66 rdf:type schema:PropertyValue
    67 N9f040cc951eb46cc93c39c7d60b98860 rdf:first sg:person.016710216215.40
    68 rdf:rest rdf:nil
    69 Nb4b316b4908042a5b04ef6a928b55cd6 rdf:first sg:person.07537625311.95
    70 rdf:rest Nfbe12c2682b344c4adf490e2647f2e50
    71 Nd45401470b0446caa78796c97237145b schema:volumeNumber 106
    72 rdf:type schema:PublicationVolume
    73 Nfbe12c2682b344c4adf490e2647f2e50 rdf:first sg:person.07714114705.85
    74 rdf:rest N9f040cc951eb46cc93c39c7d60b98860
    75 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Physical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Other Physical Sciences
    80 rdf:type schema:DefinedTerm
    81 sg:grant.6024669 http://pending.schema.org/fundedItem sg:pub.10.1007/s00340-011-4567-3
    82 rdf:type schema:MonetaryGrant
    83 sg:journal.1312262 schema:issn 0946-2171
    84 1432-0649
    85 schema:name Applied Physics B
    86 rdf:type schema:Periodical
    87 sg:person.016710216215.40 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    88 schema:familyName Tajima
    89 schema:givenName T.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016710216215.40
    91 rdf:type schema:Person
    92 sg:person.07537625311.95 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    93 schema:familyName Homma
    94 schema:givenName K.
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07537625311.95
    96 rdf:type schema:Person
    97 sg:person.07714114705.85 schema:affiliation https://www.grid.ac/institutes/grid.5252.0
    98 schema:familyName Habs
    99 schema:givenName D.
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07714114705.85
    101 rdf:type schema:Person
    102 sg:pub.10.1007/bf01343663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018417263
    103 https://doi.org/10.1007/bf01343663
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.1007/jhep10(2010)022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022085186
    106 https://doi.org/10.1007/jhep10(2010)022
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1038/34124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002599071
    109 https://doi.org/10.1038/34124
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1140/epjd/e2009-00107-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050474944
    112 https://doi.org/10.1140/epjd/e2009-00107-8
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/0030-4018(96)00317-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018185499
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/0370-2693(86)91377-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051047074
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.physletb.2008.03.076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047401312
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.physletb.2008.07.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045232760
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1063/1.3204556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032458175
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1086/300499 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058608115
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1086/377226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058670318
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1103/physrev.82.664 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060457770
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1103/physrev.99.1691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060464138
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1103/physreva.78.033822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060504980
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1103/physrevd.47.3707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060701198
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1103/physrevd.73.045016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036057631
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1103/physrevd.77.032006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047195805
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1103/physrevd.78.032013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003909999
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1103/physrevd.78.092003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004280807
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1103/physrevlett.100.080402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060752970
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1103/physrevlett.101.120401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047524254
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1103/physrevlett.102.030402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029961777
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1103/physrevlett.19.1264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060770126
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1103/physrevlett.7.118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060806120
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1103/physrevlett.97.140402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042992944
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1103/physrevlett.99.190403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022382669
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1103/revmodphys.78.309 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839613
    159 rdf:type schema:CreativeWork
    160 https://www.grid.ac/institutes/grid.5252.0 schema:alternateName Ludwig Maximilian University of Munich
    161 schema:name Fakultät für Physik, Ludwig Maximilians Universität München, 85748, Garching, Germany
    162 Graduate School of Science, Hiroshima University, Kagamiyama, 739-8526, Higashi-Hiroshima, Japan
    163 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...