Amphoteric-like refraction in a two-dimensional photonic crystal View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-07

AUTHORS

A. Martínez, J. Martí

ABSTRACT

High-index contrast photonic crystals possess an intricate photonic band structure that is responsible for surprising phenomena as the surperprism effect, self-collimation, power splitting or negative refraction. Recently, it was reported that at the interface between an isotropic medium and a uniaxial crystal (or between two uniaxial crystals) a phenomenon known as amphoteric refraction, that is, positive as well as negative refraction, can take place. By means of a equifrequency contours analysis and finite-difference time-domain simulations, we show that a two dimensional photonic crystal can also present amphoteric refraction by properly choosing the lattice orientation and the termination. However, total transmission is difficult to achieve because a Bloch mode is excited inside the photonic crystal and the coupling efficiency from this mode to an external plane wave is lower than one. More... »

PAGES

301-304

References to SciGraph publications

Journal

TITLE

Applied Physics B

ISSUE

2-3

VOLUME

81

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00340-005-1848-8

DOI

http://dx.doi.org/10.1007/s00340-005-1848-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048231594


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "Valencia Nanophotonics Technology Center, Universidad Polit\u00e9cnica de Valencia, Campus del Camino de Vera, 46022, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ednez", 
        "givenName": "A.", 
        "id": "sg:person.0734635175.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734635175.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Polytechnic University of Valencia", 
          "id": "https://www.grid.ac/institutes/grid.157927.f", 
          "name": [
            "Valencia Nanophotonics Technology Center, Universidad Polit\u00e9cnica de Valencia, Campus del Camino de Vera, 46022, Valencia, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mart\u00ed", 
        "givenName": "J.", 
        "id": "sg:person.01171153275.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171153275.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/423604b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015951371", 
          "https://doi.org/10.1038/423604b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/423604b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015951371", 
          "https://doi.org/10.1038/423604b"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1058847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029679857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.2059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042120164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.123502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057687650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r10096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.r10096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060590477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.10696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.10696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060596731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.115402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.69.115402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060609087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.045111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.71.045111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060612576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.2933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060821935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822123"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.157404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.157404", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060827364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstqe.2002.807977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334657"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.21.001771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217045"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.29.002920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065222327"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-07", 
    "datePublishedReg": "2005-07-01", 
    "description": "High-index contrast photonic crystals possess an intricate photonic band structure that is responsible for surprising phenomena as the surperprism effect, self-collimation, power splitting or negative refraction. Recently, it was reported that at the interface between an isotropic medium and a uniaxial crystal (or between two uniaxial crystals) a phenomenon known as amphoteric refraction, that is, positive as well as negative refraction, can take place. By means of a equifrequency contours analysis and finite-difference time-domain simulations, we show that a two dimensional photonic crystal can also present amphoteric refraction by properly choosing the lattice orientation and the termination. However, total transmission is difficult to achieve because a Bloch mode is excited inside the photonic crystal and the coupling efficiency from this mode to an external plane wave is lower than one.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00340-005-1848-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1312262", 
        "issn": [
          "0946-2171", 
          "1432-0649"
        ], 
        "name": "Applied Physics B", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2-3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "name": "Amphoteric-like refraction in a two-dimensional photonic crystal", 
    "pagination": "301-304", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e5c4f07f8744a0e69c79863808bd7ac8755d8a677349f7ef8435f34faac31fd0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00340-005-1848-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048231594"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00340-005-1848-8", 
      "https://app.dimensions.ai/details/publication/pub.1048231594"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:00", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60342_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00340-005-1848-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00340-005-1848-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00340-005-1848-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00340-005-1848-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00340-005-1848-8'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00340-005-1848-8 schema:about anzsrc-for:02
2 anzsrc-for:0205
3 schema:author N143cae6be13a465887fd0c19b33eda5d
4 schema:citation sg:pub.10.1038/423604b
5 https://doi.org/10.1063/1.123502
6 https://doi.org/10.1103/physrevb.58.r10096
7 https://doi.org/10.1103/physrevb.62.10696
8 https://doi.org/10.1103/physrevb.69.115402
9 https://doi.org/10.1103/physrevb.71.045111
10 https://doi.org/10.1103/physrevlett.58.2059
11 https://doi.org/10.1103/physrevlett.85.2933
12 https://doi.org/10.1103/physrevlett.85.3966
13 https://doi.org/10.1103/physrevlett.91.157404
14 https://doi.org/10.1109/jstqe.2002.807977
15 https://doi.org/10.1126/science.1058847
16 https://doi.org/10.1364/ol.21.001771
17 https://doi.org/10.1364/ol.29.002920
18 schema:datePublished 2005-07
19 schema:datePublishedReg 2005-07-01
20 schema:description High-index contrast photonic crystals possess an intricate photonic band structure that is responsible for surprising phenomena as the surperprism effect, self-collimation, power splitting or negative refraction. Recently, it was reported that at the interface between an isotropic medium and a uniaxial crystal (or between two uniaxial crystals) a phenomenon known as amphoteric refraction, that is, positive as well as negative refraction, can take place. By means of a equifrequency contours analysis and finite-difference time-domain simulations, we show that a two dimensional photonic crystal can also present amphoteric refraction by properly choosing the lattice orientation and the termination. However, total transmission is difficult to achieve because a Bloch mode is excited inside the photonic crystal and the coupling efficiency from this mode to an external plane wave is lower than one.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N718ec6cc250841bb97cb5bfc82cad9a7
25 Nef5ab72ae60546c4b30bf2aa2c8f2755
26 sg:journal.1312262
27 schema:name Amphoteric-like refraction in a two-dimensional photonic crystal
28 schema:pagination 301-304
29 schema:productId N1a0cf10a407c4234a3593c63e04b3eaf
30 N527f2afd17f24856adbe571a9bc4ec65
31 N947ef607c0ce472f9c1ccda9c210bfd8
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048231594
33 https://doi.org/10.1007/s00340-005-1848-8
34 schema:sdDatePublished 2019-04-11T11:00
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N79c034eb75e64492a983e910dfe79475
37 schema:url http://link.springer.com/10.1007/s00340-005-1848-8
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N143cae6be13a465887fd0c19b33eda5d rdf:first sg:person.0734635175.86
42 rdf:rest N19ac380d7db94de291bdee6071cbc531
43 N19ac380d7db94de291bdee6071cbc531 rdf:first sg:person.01171153275.36
44 rdf:rest rdf:nil
45 N1a0cf10a407c4234a3593c63e04b3eaf schema:name readcube_id
46 schema:value e5c4f07f8744a0e69c79863808bd7ac8755d8a677349f7ef8435f34faac31fd0
47 rdf:type schema:PropertyValue
48 N527f2afd17f24856adbe571a9bc4ec65 schema:name dimensions_id
49 schema:value pub.1048231594
50 rdf:type schema:PropertyValue
51 N718ec6cc250841bb97cb5bfc82cad9a7 schema:volumeNumber 81
52 rdf:type schema:PublicationVolume
53 N79c034eb75e64492a983e910dfe79475 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N947ef607c0ce472f9c1ccda9c210bfd8 schema:name doi
56 schema:value 10.1007/s00340-005-1848-8
57 rdf:type schema:PropertyValue
58 Nef5ab72ae60546c4b30bf2aa2c8f2755 schema:issueNumber 2-3
59 rdf:type schema:PublicationIssue
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
64 schema:name Optical Physics
65 rdf:type schema:DefinedTerm
66 sg:journal.1312262 schema:issn 0946-2171
67 1432-0649
68 schema:name Applied Physics B
69 rdf:type schema:Periodical
70 sg:person.01171153275.36 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
71 schema:familyName Martí
72 schema:givenName J.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01171153275.36
74 rdf:type schema:Person
75 sg:person.0734635175.86 schema:affiliation https://www.grid.ac/institutes/grid.157927.f
76 schema:familyName Martínez
77 schema:givenName A.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0734635175.86
79 rdf:type schema:Person
80 sg:pub.10.1038/423604b schema:sameAs https://app.dimensions.ai/details/publication/pub.1015951371
81 https://doi.org/10.1038/423604b
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1063/1.123502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057687650
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1103/physrevb.58.r10096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060590477
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1103/physrevb.62.10696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060596731
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrevb.69.115402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060609087
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevb.71.045111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060612576
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physrevlett.58.2059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042120164
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevlett.85.2933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060821935
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.85.3966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822123
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.91.157404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060827364
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1109/jstqe.2002.807977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334657
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1126/science.1058847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029679857
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1364/ol.21.001771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217045
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1364/ol.29.002920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065222327
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.157927.f schema:alternateName Polytechnic University of Valencia
110 schema:name Valencia Nanophotonics Technology Center, Universidad Politécnica de Valencia, Campus del Camino de Vera, 46022, Valencia, Spain
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...