Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-03

AUTHORS

X. Blase, J.-C. Charlier, A. De Vita, R. Car

ABSTRACT

CyNz nanotubes and related heterojunctions have been studied using both ab initio and semi-empirical approaches. Pure BN nanotubes present a very stable quasiparticle band gap around 5.5–6.0 eV independent of the tube radius and helicity. The bottom of the conduction bands is controlled by a nearly-free-electronn state localized inside the nanotube, suggesting interesting properties under doping. In the case of nanotubes with BC2N stoichiometry, we show that in the thermodynamic limit the system is driven towards segregation of pure C and BN sections. This demixing significantly affects the electronic properties of such materials. The same process of segregation into BC3 islands is evidenced in the case of B-doped carbon nanotubes. These spontaneous segregation processes lead to the formation of quantum dots or nanotube heterojunctions. In particular, C/BN superlattices or isolated junctions have been investigated as specific examples of the wide variety of electronic devices that can be realized using such nanotubes. More... »

PAGES

293-300

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003390050891

DOI

http://dx.doi.org/10.1007/s003390050891

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037002417


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "D\u00e9partement de Physique des Mat\u00e9riaux, U.M.R. No.5586, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blase", 
        "givenName": "X.", 
        "id": "sg:person.0644161027.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644161027.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 Catholique de Louvain", 
          "id": "https://www.grid.ac/institutes/grid.7942.8", 
          "name": [
            "Unit\u00e9 de Physico-Chimie et de Physique des Mat\u00e9riaux, Universit\u00e9 Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium, BE"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charlier", 
        "givenName": "J.-C.", 
        "id": "sg:person.01355100416.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355100416.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Trieste", 
          "id": "https://www.grid.ac/institutes/grid.5133.4", 
          "name": [
            "Istituto Nazionale di Fisica della Materia (INFM), and Department of Material Engineering and Applied Chemistry, University of Trieste, via Valerio 2, I-34149 Trieste, Italy, IT"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Vita", 
        "givenName": "A.", 
        "id": "sg:person.01302545505.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302545505.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Polytechnique F\u00e9d\u00e9rale de Lausanne", 
          "id": "https://www.grid.ac/institutes/grid.5333.6", 
          "name": [
            "Institut Romand de Recherche Num\u00e9rique en Physique des Mat\u00e9riaux (IRRMA), PPH-Ecublens, CH-1015 Lausanne, Switzerland, CH"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Car", 
        "givenName": "R.", 
        "id": "sg:person.0664065627.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664065627.24"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "CyNz nanotubes and related heterojunctions have been studied using both ab initio and semi-empirical approaches. Pure BN nanotubes present a very stable quasiparticle band gap around 5.5\u20136.0 eV independent of the tube radius and helicity. The bottom of the conduction bands is controlled by a nearly-free-electronn state localized inside the nanotube, suggesting interesting properties under doping. In the case of nanotubes with BC2N stoichiometry, we show that in the thermodynamic limit the system is driven towards segregation of pure C and BN sections. This demixing significantly affects the electronic properties of such materials. The same process of segregation into BC3 islands is evidenced in the case of B-doped carbon nanotubes. These spontaneous segregation processes lead to the formation of quantum dots or nanotube heterojunctions. In particular, C/BN superlattices or isolated junctions have been investigated as specific examples of the wide variety of electronic devices that can be realized using such nanotubes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003390050891", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "68"
      }
    ], 
    "name": "Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions", 
    "pagination": "293-300", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b0443b5f603ffd7307bb7dd214c2e22e8c9f8259aac58aec437305a06a230da7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003390050891"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037002417"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003390050891", 
      "https://app.dimensions.ai/details/publication/pub.1037002417"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T01:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8700_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s003390050891"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003390050891'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003390050891'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003390050891'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003390050891'


 

This table displays all metadata directly associated to this object as RDF triples.

90 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003390050891 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N124255de45b449ed8f5fea8f141fee07
4 schema:datePublished 1999-03
5 schema:datePublishedReg 1999-03-01
6 schema:description CyNz nanotubes and related heterojunctions have been studied using both ab initio and semi-empirical approaches. Pure BN nanotubes present a very stable quasiparticle band gap around 5.5–6.0 eV independent of the tube radius and helicity. The bottom of the conduction bands is controlled by a nearly-free-electronn state localized inside the nanotube, suggesting interesting properties under doping. In the case of nanotubes with BC2N stoichiometry, we show that in the thermodynamic limit the system is driven towards segregation of pure C and BN sections. This demixing significantly affects the electronic properties of such materials. The same process of segregation into BC3 islands is evidenced in the case of B-doped carbon nanotubes. These spontaneous segregation processes lead to the formation of quantum dots or nanotube heterojunctions. In particular, C/BN superlattices or isolated junctions have been investigated as specific examples of the wide variety of electronic devices that can be realized using such nanotubes.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N63dbbab5bf4244359a1114a43dc29754
11 N9fecb9040cdf4ada9019279b1bc96ec5
12 sg:journal.1022207
13 schema:name Structural and electronic properties of composite BxCyNz nanotubes and heterojunctions
14 schema:pagination 293-300
15 schema:productId N08975a6c9af44d4e95407fd06667618c
16 N8811d97c7191453aa4663b0b19e23381
17 Nf3fddf4861484d07b9b3db324dba6082
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037002417
19 https://doi.org/10.1007/s003390050891
20 schema:sdDatePublished 2019-04-11T01:54
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Ndf125ef0ab474d0484e17cb8156688fe
23 schema:url http://link.springer.com/10.1007/s003390050891
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N08975a6c9af44d4e95407fd06667618c schema:name readcube_id
28 schema:value b0443b5f603ffd7307bb7dd214c2e22e8c9f8259aac58aec437305a06a230da7
29 rdf:type schema:PropertyValue
30 N124255de45b449ed8f5fea8f141fee07 rdf:first sg:person.0644161027.01
31 rdf:rest Nc70c1d5c4bee4076849bcf0bdaba895f
32 N32b8e5e96dc44cf68e5f78c07f1628cc rdf:first sg:person.0664065627.24
33 rdf:rest rdf:nil
34 N554e69444c154f988fa5dfb3da0acbc8 rdf:first sg:person.01302545505.37
35 rdf:rest N32b8e5e96dc44cf68e5f78c07f1628cc
36 N63dbbab5bf4244359a1114a43dc29754 schema:volumeNumber 68
37 rdf:type schema:PublicationVolume
38 N803237d6966740949a4eff273a02c13f schema:name Département de Physique des Matériaux, U.M.R. No.5586, 43 Bd du 11 novembre 1918, 69622 Villeurbanne Cedex, France, FR
39 rdf:type schema:Organization
40 N8811d97c7191453aa4663b0b19e23381 schema:name dimensions_id
41 schema:value pub.1037002417
42 rdf:type schema:PropertyValue
43 N9fecb9040cdf4ada9019279b1bc96ec5 schema:issueNumber 3
44 rdf:type schema:PublicationIssue
45 Nc70c1d5c4bee4076849bcf0bdaba895f rdf:first sg:person.01355100416.87
46 rdf:rest N554e69444c154f988fa5dfb3da0acbc8
47 Ndf125ef0ab474d0484e17cb8156688fe schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nf3fddf4861484d07b9b3db324dba6082 schema:name doi
50 schema:value 10.1007/s003390050891
51 rdf:type schema:PropertyValue
52 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
53 schema:name Chemical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
56 schema:name Physical Chemistry (incl. Structural)
57 rdf:type schema:DefinedTerm
58 sg:journal.1022207 schema:issn 0947-8396
59 1432-0630
60 schema:name Applied Physics A
61 rdf:type schema:Periodical
62 sg:person.01302545505.37 schema:affiliation https://www.grid.ac/institutes/grid.5133.4
63 schema:familyName De Vita
64 schema:givenName A.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01302545505.37
66 rdf:type schema:Person
67 sg:person.01355100416.87 schema:affiliation https://www.grid.ac/institutes/grid.7942.8
68 schema:familyName Charlier
69 schema:givenName J.-C.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01355100416.87
71 rdf:type schema:Person
72 sg:person.0644161027.01 schema:affiliation N803237d6966740949a4eff273a02c13f
73 schema:familyName Blase
74 schema:givenName X.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644161027.01
76 rdf:type schema:Person
77 sg:person.0664065627.24 schema:affiliation https://www.grid.ac/institutes/grid.5333.6
78 schema:familyName Car
79 schema:givenName R.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0664065627.24
81 rdf:type schema:Person
82 https://www.grid.ac/institutes/grid.5133.4 schema:alternateName University of Trieste
83 schema:name Istituto Nazionale di Fisica della Materia (INFM), and Department of Material Engineering and Applied Chemistry, University of Trieste, via Valerio 2, I-34149 Trieste, Italy, IT
84 rdf:type schema:Organization
85 https://www.grid.ac/institutes/grid.5333.6 schema:alternateName École Polytechnique Fédérale de Lausanne
86 schema:name Institut Romand de Recherche Numérique en Physique des Matériaux (IRRMA), PPH-Ecublens, CH-1015 Lausanne, Switzerland, CH
87 rdf:type schema:Organization
88 https://www.grid.ac/institutes/grid.7942.8 schema:alternateName Université Catholique de Louvain
89 schema:name Unité de Physico-Chimie et de Physique des Matériaux, Université Catholique de Louvain, Place Croix du Sud 1, B-1348 Louvain-la-Neuve, Belgium, BE
90 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...