Formation of metallic nanophases in silica by ion-beam mixing Part I: Mixing mechanisms View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-03

AUTHORS

L. Thomé, J. Jagielski, G. Rizza, F. Garrido, J.C. Pivin

ABSTRACT

2 matrix is studied by means of the Rutherford backscattering technique. Two different mechanisms are observed: at low temperature (300 K and below) the variance of the mixed profile varies with the square of the ion fluence, whereas at higher temperature (400 K to 620 K) a linear variation is found. The low-temperature kinetics are accounted for by the migration of Ag-defect complexes after introduction of Ag atoms into the silica matrix by a ballistic process. A combination of ballistic and radiation-enhanced diffusion processes explains the results obtained at high temperature. This work emphasizes the role of the presence of metallic clusters on the migration of metal atoms in silica. More... »

PAGES

327-334

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003390050674

DOI

http://dx.doi.org/10.1007/s003390050674

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010937482


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.508754.b", 
          "name": [
            "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Thom\u00e9", 
        "givenName": "L.", 
        "id": "sg:person.015430104323.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015430104323.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland, PL", 
          "id": "http://www.grid.ac/institutes/grid.425113.0", 
          "name": [
            "Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland, PL"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jagielski", 
        "givenName": "J.", 
        "id": "sg:person.010300001057.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300001057.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.508754.b", 
          "name": [
            "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rizza", 
        "givenName": "G.", 
        "id": "sg:person.01001275302.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001275302.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.508754.b", 
          "name": [
            "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garrido", 
        "givenName": "F.", 
        "id": "sg:person.013612020556.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612020556.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR", 
          "id": "http://www.grid.ac/institutes/grid.508754.b", 
          "name": [
            "Centre de Spectrom\u00e9trie Nucl\u00e9aire et de Spectrom\u00e9trie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pivin", 
        "givenName": "J.C.", 
        "id": "sg:person.011044567341.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044567341.83"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1998-03", 
    "datePublishedReg": "1998-03-01", 
    "description": "2 matrix is studied by means of the Rutherford backscattering technique. Two different mechanisms are observed: at low temperature (300\u00a0K and below) the variance of the mixed profile varies with the square of the ion fluence, whereas at higher temperature (400\u00a0K to 620\u00a0K) a\u00a0linear variation is found. The low-temperature kinetics are accounted for by the migration of Ag-defect complexes after introduction of Ag atoms into the silica matrix by a\u00a0ballistic process. A\u00a0combination of ballistic and radiation-enhanced diffusion processes explains the results obtained at high temperature. This work emphasizes the role of the presence of metallic clusters on the migration of metal atoms in silica.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s003390050674", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "keywords": [
      "radiation-enhanced diffusion processes", 
      "metallic nanophases", 
      "metallic clusters", 
      "Rutherford backscattering technique", 
      "diffusion process", 
      "ion fluence", 
      "linear variation", 
      "ballistic process", 
      "backscattering technique", 
      "Part I", 
      "matrix", 
      "profile varies", 
      "low temperature", 
      "squares", 
      "high temperature", 
      "atoms", 
      "temperature", 
      "fluence", 
      "metal atoms", 
      "clusters", 
      "low-temperature kinetics", 
      "introduction of Ag", 
      "variance", 
      "technique", 
      "means", 
      "process", 
      "silica matrix", 
      "work", 
      "nanophases", 
      "results", 
      "variation", 
      "silica", 
      "introduction", 
      "combination", 
      "presence", 
      "varies", 
      "kinetics", 
      "Ag", 
      "mechanism", 
      "formation", 
      "different mechanisms", 
      "migration", 
      "role", 
      "complexes"
    ], 
    "name": "Formation of metallic nanophases in silica by ion-beam mixing Part I: Mixing mechanisms", 
    "pagination": "327-334", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010937482"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003390050674"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003390050674", 
      "https://app.dimensions.ai/details/publication/pub.1010937482"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_266.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s003390050674"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003390050674'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003390050674'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003390050674'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003390050674'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      20 PREDICATES      69 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003390050674 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb89bc9f7693f424e9ad587a8fd410cba
4 schema:datePublished 1998-03
5 schema:datePublishedReg 1998-03-01
6 schema:description 2 matrix is studied by means of the Rutherford backscattering technique. Two different mechanisms are observed: at low temperature (300 K and below) the variance of the mixed profile varies with the square of the ion fluence, whereas at higher temperature (400 K to 620 K) a linear variation is found. The low-temperature kinetics are accounted for by the migration of Ag-defect complexes after introduction of Ag atoms into the silica matrix by a ballistic process. A combination of ballistic and radiation-enhanced diffusion processes explains the results obtained at high temperature. This work emphasizes the role of the presence of metallic clusters on the migration of metal atoms in silica.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N5e8c512dbedd4b6b8a0fc9203a544af3
10 Nba18878569384456a44e9f53a179818b
11 sg:journal.1022207
12 schema:keywords Ag
13 Part I
14 Rutherford backscattering technique
15 atoms
16 backscattering technique
17 ballistic process
18 clusters
19 combination
20 complexes
21 different mechanisms
22 diffusion process
23 fluence
24 formation
25 high temperature
26 introduction
27 introduction of Ag
28 ion fluence
29 kinetics
30 linear variation
31 low temperature
32 low-temperature kinetics
33 matrix
34 means
35 mechanism
36 metal atoms
37 metallic clusters
38 metallic nanophases
39 migration
40 nanophases
41 presence
42 process
43 profile varies
44 radiation-enhanced diffusion processes
45 results
46 role
47 silica
48 silica matrix
49 squares
50 technique
51 temperature
52 variance
53 variation
54 varies
55 work
56 schema:name Formation of metallic nanophases in silica by ion-beam mixing Part I: Mixing mechanisms
57 schema:pagination 327-334
58 schema:productId N81d3fc193f164c7c91076a112452f318
59 N9f4b184d34c146b296d092adfae9b700
60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010937482
61 https://doi.org/10.1007/s003390050674
62 schema:sdDatePublished 2022-11-24T20:47
63 schema:sdLicense https://scigraph.springernature.com/explorer/license/
64 schema:sdPublisher N78f1daee2ede4e6aa0dd157c8885b514
65 schema:url https://doi.org/10.1007/s003390050674
66 sgo:license sg:explorer/license/
67 sgo:sdDataset articles
68 rdf:type schema:ScholarlyArticle
69 N27d3e288d17744fdbae5f202f182f2f5 rdf:first sg:person.010300001057.63
70 rdf:rest Nd30bf68d8f6e40b8ba137c9189bc2836
71 N5e8c512dbedd4b6b8a0fc9203a544af3 schema:issueNumber 3
72 rdf:type schema:PublicationIssue
73 N78f1daee2ede4e6aa0dd157c8885b514 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N81d3fc193f164c7c91076a112452f318 schema:name doi
76 schema:value 10.1007/s003390050674
77 rdf:type schema:PropertyValue
78 N9f4b184d34c146b296d092adfae9b700 schema:name dimensions_id
79 schema:value pub.1010937482
80 rdf:type schema:PropertyValue
81 Na12f0d7ce10d46aa93cf1a03e963cca3 rdf:first sg:person.013612020556.19
82 rdf:rest Ndb34cbe6bce84abe9b5e09f8326bcc63
83 Nb89bc9f7693f424e9ad587a8fd410cba rdf:first sg:person.015430104323.74
84 rdf:rest N27d3e288d17744fdbae5f202f182f2f5
85 Nba18878569384456a44e9f53a179818b schema:volumeNumber 66
86 rdf:type schema:PublicationVolume
87 Nd30bf68d8f6e40b8ba137c9189bc2836 rdf:first sg:person.01001275302.59
88 rdf:rest Na12f0d7ce10d46aa93cf1a03e963cca3
89 Ndb34cbe6bce84abe9b5e09f8326bcc63 rdf:first sg:person.011044567341.83
90 rdf:rest rdf:nil
91 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
92 schema:name Physical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
95 schema:name Other Physical Sciences
96 rdf:type schema:DefinedTerm
97 sg:journal.1022207 schema:issn 0947-8396
98 1432-0630
99 schema:name Applied Physics A
100 schema:publisher Springer Nature
101 rdf:type schema:Periodical
102 sg:person.01001275302.59 schema:affiliation grid-institutes:grid.508754.b
103 schema:familyName Rizza
104 schema:givenName G.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001275302.59
106 rdf:type schema:Person
107 sg:person.010300001057.63 schema:affiliation grid-institutes:grid.425113.0
108 schema:familyName Jagielski
109 schema:givenName J.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010300001057.63
111 rdf:type schema:Person
112 sg:person.011044567341.83 schema:affiliation grid-institutes:grid.508754.b
113 schema:familyName Pivin
114 schema:givenName J.C.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011044567341.83
116 rdf:type schema:Person
117 sg:person.013612020556.19 schema:affiliation grid-institutes:grid.508754.b
118 schema:familyName Garrido
119 schema:givenName F.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612020556.19
121 rdf:type schema:Person
122 sg:person.015430104323.74 schema:affiliation grid-institutes:grid.508754.b
123 schema:familyName Thomé
124 schema:givenName L.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015430104323.74
126 rdf:type schema:Person
127 grid-institutes:grid.425113.0 schema:alternateName Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland, PL
128 schema:name Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw, Poland, PL
129 rdf:type schema:Organization
130 grid-institutes:grid.508754.b schema:alternateName Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR
131 schema:name Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, IN2P3-CNRS, 91405 Orsay Campus, France, FR
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...