Influence of pyrolysis temperature on the low-frequency microwave absorption properties of carbon encapsulated nickel/nickel oxide composites View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-28

AUTHORS

Haitao Bai, Pengfei Yin, Limin Zhang, Xiyuan Sun, Jianwu Dai

ABSTRACT

Owing to the urgent need of microwave absorbers in low-frequency range, herein, the core–shell nickel/nickel oxide@carbon nanocomposites with ideal low-frequency absorbing properties were fabricated via a simple solvothermal and pyrolysis approach. The Ni and NiO nanoparticles were wrapped by outer carbon shell, providing abundant defects and interfaces, which is helpful to the dipole and interfacial polarizations. Besides, the conduction loss of the carbon shell and Ni nanoparticles, magnetic losses induced by Ni nanoparticles, core–shell porous structure and proper impedance matching regulated by calcining process could accelerate the absorption of microwave. Importantly, these factors are all strongly influenced by the pyrolysis temperature, and the composite treated under 500 °C shows the maximum reflection loss of − 34.13 dB at 0.85 GHz when the thickness is 3.0 mm, also the broadest effective frequency bandwidth in low frequency range can reach 1.65 GHz at 2.0 mm. Thus, this calcination temperature depended core–shell nickel/nickel oxide@carbon composite provides a feasible way to design absorbers with high performance and thin thickness in low-frequency bands. More... »

PAGES

875

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-021-05032-4

DOI

http://dx.doi.org/10.1007/s00339-021-05032-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142238098


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "College of Science, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Science, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bai", 
        "givenName": "Haitao", 
        "id": "sg:person.015265053201.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265053201.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Science, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Pengfei", 
        "id": "sg:person.010033367005.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010033367005.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.440588.5", 
          "name": [
            "School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Limin", 
        "id": "sg:person.010644777435.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644777435.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Science, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Science, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sun", 
        "givenName": "Xiyuan", 
        "id": "sg:person.01361360323.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361360323.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "College of Mechanical and Electrical Engineering, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.80510.3c", 
          "name": [
            "College of Mechanical and Electrical Engineering, Sichuan Agricultural University, 625014, Ya\u2019an, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dai", 
        "givenName": "Jianwu", 
        "id": "sg:person.010526406760.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526406760.00"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s42114-021-00304-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140103985", 
          "https://doi.org/10.1007/s42114-021-00304-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40820-021-00704-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140445485", 
          "https://doi.org/10.1007/s40820-021-00704-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-020-04857-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132778245", 
          "https://doi.org/10.1007/s10854-020-04857-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-017-1439-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090947213", 
          "https://doi.org/10.1007/s10853-017-1439-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-28", 
    "datePublishedReg": "2021-10-28", 
    "description": "Owing to the urgent need of microwave absorbers in low-frequency range, herein, the core\u2013shell nickel/nickel oxide@carbon nanocomposites with ideal low-frequency absorbing properties were fabricated via a simple solvothermal and pyrolysis approach. The Ni and NiO nanoparticles were wrapped by outer carbon shell, providing abundant defects and interfaces, which is helpful to the dipole and interfacial polarizations. Besides, the conduction loss of the carbon shell and Ni nanoparticles, magnetic losses induced by Ni nanoparticles, core\u2013shell porous structure and proper impedance matching regulated by calcining process could accelerate the absorption of microwave. Importantly, these factors are all strongly influenced by the pyrolysis temperature, and the composite treated under 500\u00a0\u00b0C shows the maximum reflection loss of \u2212\u200934.13\u00a0dB at 0.85\u00a0GHz when the thickness is 3.0\u00a0mm, also the broadest effective frequency bandwidth in low frequency range can reach 1.65\u00a0GHz at 2.0\u00a0mm. Thus, this calcination temperature depended core\u2013shell nickel/nickel oxide@carbon composite provides a feasible way to design absorbers with high performance and thin thickness in low-frequency bands.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00339-021-05032-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "127"
      }
    ], 
    "keywords": [
      "carbon shell", 
      "Ni nanoparticles", 
      "low-frequency microwave absorption properties", 
      "outer carbon shell", 
      "maximum reflection loss", 
      "microwave absorption properties", 
      "nickel oxide composites", 
      "proper impedance matching", 
      "broad effective frequency bandwidth", 
      "low frequency range", 
      "effective frequency bandwidth", 
      "NiO nanoparticles", 
      "microwave absorber", 
      "simple solvothermal", 
      "abundant defects", 
      "reflection loss", 
      "oxide composites", 
      "impedance matching", 
      "pyrolysis temperature", 
      "pyrolysis approach", 
      "nanoparticles", 
      "Absorbing Properties", 
      "absorption of microwaves", 
      "porous structure", 
      "thin thickness", 
      "magnetic loss", 
      "frequency bandwidth", 
      "low frequency band", 
      "interfacial polarization", 
      "absorption properties", 
      "high performance", 
      "calcination temperature", 
      "conduction losses", 
      "GHz", 
      "frequency range", 
      "absorber", 
      "composites", 
      "feasible way", 
      "nanocomposites", 
      "shell", 
      "solvothermal", 
      "bandwidth", 
      "microwave", 
      "temperature", 
      "dB", 
      "thickness", 
      "nickel", 
      "properties", 
      "band", 
      "range", 
      "carbon", 
      "interface", 
      "performance", 
      "Ni", 
      "absorption", 
      "polarization", 
      "dipole", 
      "loss", 
      "urgent need", 
      "structure", 
      "matching", 
      "influence", 
      "process", 
      "defects", 
      "approach", 
      "way", 
      "need", 
      "factors"
    ], 
    "name": "Influence of pyrolysis temperature on the low-frequency microwave absorption properties of carbon encapsulated nickel/nickel oxide composites", 
    "pagination": "875", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142238098"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-021-05032-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-021-05032-4", 
      "https://app.dimensions.ai/details/publication/pub.1142238098"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_883.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00339-021-05032-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-021-05032-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-021-05032-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-021-05032-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-021-05032-4'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      96 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-021-05032-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N375b5afece7a44daade953c782d4b4df
4 schema:citation sg:pub.10.1007/s10853-017-1439-1
5 sg:pub.10.1007/s10854-020-04857-8
6 sg:pub.10.1007/s40820-021-00704-5
7 sg:pub.10.1007/s42114-021-00304-2
8 schema:datePublished 2021-10-28
9 schema:datePublishedReg 2021-10-28
10 schema:description Owing to the urgent need of microwave absorbers in low-frequency range, herein, the core–shell nickel/nickel oxide@carbon nanocomposites with ideal low-frequency absorbing properties were fabricated via a simple solvothermal and pyrolysis approach. The Ni and NiO nanoparticles were wrapped by outer carbon shell, providing abundant defects and interfaces, which is helpful to the dipole and interfacial polarizations. Besides, the conduction loss of the carbon shell and Ni nanoparticles, magnetic losses induced by Ni nanoparticles, core–shell porous structure and proper impedance matching regulated by calcining process could accelerate the absorption of microwave. Importantly, these factors are all strongly influenced by the pyrolysis temperature, and the composite treated under 500 °C shows the maximum reflection loss of − 34.13 dB at 0.85 GHz when the thickness is 3.0 mm, also the broadest effective frequency bandwidth in low frequency range can reach 1.65 GHz at 2.0 mm. Thus, this calcination temperature depended core–shell nickel/nickel oxide@carbon composite provides a feasible way to design absorbers with high performance and thin thickness in low-frequency bands.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N4fe30d4b3bbc4883a23739bc0127333d
14 N78536acb410047fc956719c98a055534
15 sg:journal.1022207
16 schema:keywords Absorbing Properties
17 GHz
18 Ni
19 Ni nanoparticles
20 NiO nanoparticles
21 absorber
22 absorption
23 absorption of microwaves
24 absorption properties
25 abundant defects
26 approach
27 band
28 bandwidth
29 broad effective frequency bandwidth
30 calcination temperature
31 carbon
32 carbon shell
33 composites
34 conduction losses
35 dB
36 defects
37 dipole
38 effective frequency bandwidth
39 factors
40 feasible way
41 frequency bandwidth
42 frequency range
43 high performance
44 impedance matching
45 influence
46 interface
47 interfacial polarization
48 loss
49 low frequency band
50 low frequency range
51 low-frequency microwave absorption properties
52 magnetic loss
53 matching
54 maximum reflection loss
55 microwave
56 microwave absorber
57 microwave absorption properties
58 nanocomposites
59 nanoparticles
60 need
61 nickel
62 nickel oxide composites
63 outer carbon shell
64 oxide composites
65 performance
66 polarization
67 porous structure
68 process
69 proper impedance matching
70 properties
71 pyrolysis approach
72 pyrolysis temperature
73 range
74 reflection loss
75 shell
76 simple solvothermal
77 solvothermal
78 structure
79 temperature
80 thickness
81 thin thickness
82 urgent need
83 way
84 schema:name Influence of pyrolysis temperature on the low-frequency microwave absorption properties of carbon encapsulated nickel/nickel oxide composites
85 schema:pagination 875
86 schema:productId N83c75481a9be4e83a5e602b71210932b
87 N91f24e6dcc2643808c52f673c0a1db0a
88 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142238098
89 https://doi.org/10.1007/s00339-021-05032-4
90 schema:sdDatePublished 2022-11-24T21:06
91 schema:sdLicense https://scigraph.springernature.com/explorer/license/
92 schema:sdPublisher Nef9e72eeece8434c8a3e5504f2ff816b
93 schema:url https://doi.org/10.1007/s00339-021-05032-4
94 sgo:license sg:explorer/license/
95 sgo:sdDataset articles
96 rdf:type schema:ScholarlyArticle
97 N061783c439a841828dd585e298cdf168 rdf:first sg:person.010644777435.46
98 rdf:rest N28e4ca7cd0b6450a92458014f99c423c
99 N28e4ca7cd0b6450a92458014f99c423c rdf:first sg:person.01361360323.89
100 rdf:rest N91b69371b2374707a811040a3d23f15a
101 N375b5afece7a44daade953c782d4b4df rdf:first sg:person.015265053201.09
102 rdf:rest Ndc73eb2dbd724f47b87aaa16c24395cf
103 N4fe30d4b3bbc4883a23739bc0127333d schema:volumeNumber 127
104 rdf:type schema:PublicationVolume
105 N78536acb410047fc956719c98a055534 schema:issueNumber 11
106 rdf:type schema:PublicationIssue
107 N83c75481a9be4e83a5e602b71210932b schema:name dimensions_id
108 schema:value pub.1142238098
109 rdf:type schema:PropertyValue
110 N91b69371b2374707a811040a3d23f15a rdf:first sg:person.010526406760.00
111 rdf:rest rdf:nil
112 N91f24e6dcc2643808c52f673c0a1db0a schema:name doi
113 schema:value 10.1007/s00339-021-05032-4
114 rdf:type schema:PropertyValue
115 Ndc73eb2dbd724f47b87aaa16c24395cf rdf:first sg:person.010033367005.38
116 rdf:rest N061783c439a841828dd585e298cdf168
117 Nef9e72eeece8434c8a3e5504f2ff816b schema:name Springer Nature - SN SciGraph project
118 rdf:type schema:Organization
119 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
120 schema:name Engineering
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
123 schema:name Materials Engineering
124 rdf:type schema:DefinedTerm
125 sg:journal.1022207 schema:issn 0947-8396
126 1432-0630
127 schema:name Applied Physics A
128 schema:publisher Springer Nature
129 rdf:type schema:Periodical
130 sg:person.010033367005.38 schema:affiliation grid-institutes:grid.80510.3c
131 schema:familyName Yin
132 schema:givenName Pengfei
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010033367005.38
134 rdf:type schema:Person
135 sg:person.010526406760.00 schema:affiliation grid-institutes:grid.80510.3c
136 schema:familyName Dai
137 schema:givenName Jianwu
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010526406760.00
139 rdf:type schema:Person
140 sg:person.010644777435.46 schema:affiliation grid-institutes:grid.440588.5
141 schema:familyName Zhang
142 schema:givenName Limin
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010644777435.46
144 rdf:type schema:Person
145 sg:person.01361360323.89 schema:affiliation grid-institutes:grid.80510.3c
146 schema:familyName Sun
147 schema:givenName Xiyuan
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361360323.89
149 rdf:type schema:Person
150 sg:person.015265053201.09 schema:affiliation grid-institutes:grid.80510.3c
151 schema:familyName Bai
152 schema:givenName Haitao
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015265053201.09
154 rdf:type schema:Person
155 sg:pub.10.1007/s10853-017-1439-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090947213
156 https://doi.org/10.1007/s10853-017-1439-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s10854-020-04857-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132778245
159 https://doi.org/10.1007/s10854-020-04857-8
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s40820-021-00704-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140445485
162 https://doi.org/10.1007/s40820-021-00704-5
163 rdf:type schema:CreativeWork
164 sg:pub.10.1007/s42114-021-00304-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140103985
165 https://doi.org/10.1007/s42114-021-00304-2
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.440588.5 schema:alternateName School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi’an, People’s Republic of China
168 schema:name School of Physical Science and Technology, Northwestern Polytechnical University, 710072, Xi’an, People’s Republic of China
169 rdf:type schema:Organization
170 grid-institutes:grid.80510.3c schema:alternateName College of Mechanical and Electrical Engineering, Sichuan Agricultural University, 625014, Ya’an, People’s Republic of China
171 College of Science, Sichuan Agricultural University, 625014, Ya’an, People’s Republic of China
172 schema:name College of Mechanical and Electrical Engineering, Sichuan Agricultural University, 625014, Ya’an, People’s Republic of China
173 College of Science, Sichuan Agricultural University, 625014, Ya’an, People’s Republic of China
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...