Tribocorrosion performance of laser additively processed high-entropy alloy coatings on aluminum View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Gaurav R. Argade, Sameehan S. Joshi, Aditya V. Ayyagari, Sundeep Mukherjee, Rajiv S. Mishra, Narendra B. Dahotre

ABSTRACT

Al–Co–Cr–Fe high-entropy alloy coatings were laser additively produced on aluminum substrate under different laser fluences (17.0–21.2 J/mm2). The resultant coatings consisted of a mixture of high-entropy and intermetallic phases, which resulted in marked improvement in hardness (~ 275–500 HV) as compared to the aluminum substrate (~ 30 HV). Coating corresponding to higher laser fluences showed lower corrosion currents (Icorr ~ 3.6 × 10−4 mA/cm2) and higher linear polarization resistance (LPR) of ~ 14–16 kΩ/cm2 as compared to the aluminum substrate (Icorr ~ 7×10−4 mA/cm2) and ~ 11 kΩ/cm2 in 0.6 M NaCl solution. The behavior of surface properties was analyzed in relation to the variation in fraction of HEA and intermetallic phases within the coatings resulting due to increased content of Al from the Al substrate with an increase in the laser fluence. The coating consisting of optimal amount of HEA and intermetallic phases showed a tenfold decrease wear volume loss (0.01 mm3) as compared to Al substrate showing 0.11 mm3. More... »

PAGES

272

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-019-2573-1

DOI

http://dx.doi.org/10.1007/s00339-019-2573-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1113052879


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Cummins (United States)", 
          "id": "https://www.grid.ac/institutes/grid.466574.2", 
          "name": [
            "Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA", 
            "Cummins, Columbus, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Argade", 
        "givenName": "Gaurav R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cummins (United States)", 
          "id": "https://www.grid.ac/institutes/grid.466574.2", 
          "name": [
            "Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA", 
            "Laboratory of Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA", 
            "Cummins, Columbus, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joshi", 
        "givenName": "Sameehan S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Argonne National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.187073.a", 
          "name": [
            "Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA", 
            "Argonne National Laboratory, Argonne, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ayyagari", 
        "givenName": "Aditya V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mukherjee", 
        "givenName": "Sundeep", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mishra", 
        "givenName": "Rajiv S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of North Texas", 
          "id": "https://www.grid.ac/institutes/grid.266869.5", 
          "name": [
            "Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA", 
            "Laboratory of Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dahotre", 
        "givenName": "Narendra B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2015.10.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001312145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10408436.2015.1053602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001947215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2013.01.148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002580781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4895137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002649651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2008.04.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006930467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2014.12.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007905097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2014.07.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011343481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2010.09.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018754079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2016.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020774674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2016.08.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022069941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2014.11.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022807917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2006.06.048", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023819268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2010.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024146372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2013.07.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025443650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2014.11.161", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029457856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2013.12.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031579215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adem.200300567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040529021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2014.03.137", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044973799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2010.03.111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045021337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2016.11.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045810083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.phpro.2011.03.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048747168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2011.03.083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050149178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10103-017-2174-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084023872", 
          "https://doi.org/10.1007/s10103-017-2174-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10103-017-2174-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084023872", 
          "https://doi.org/10.1007/s10103-017-2174-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.optlastec.2017.03.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084100328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2017.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090575366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2017.07.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090575366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41529-017-0009-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091272889", 
          "https://doi.org/10.1038/s41529-017-0009-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2018.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101006611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/21663831.2018.1434248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101150711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/met8080603", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105978668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/cryst8110409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107948718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/cryst9010056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111566228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/cryst9010056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111566228"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Al\u2013Co\u2013Cr\u2013Fe high-entropy alloy coatings were laser additively produced on aluminum substrate under different laser fluences (17.0\u201321.2 J/mm2). The resultant coatings consisted of a mixture of high-entropy and intermetallic phases, which resulted in marked improvement in hardness (~ 275\u2013500 HV) as compared to the aluminum substrate (~ 30 HV). Coating corresponding to higher laser fluences showed lower corrosion currents (Icorr ~ 3.6 \u00d7 10\u22124 mA/cm2) and higher linear polarization resistance (LPR) of ~ 14\u201316 k\u03a9/cm2 as compared to the aluminum substrate (Icorr ~ 7\u00d710\u22124 mA/cm2) and ~ 11 k\u03a9/cm2 in 0.6 M NaCl solution. The behavior of surface properties was analyzed in relation to the variation in fraction of HEA and intermetallic phases within the coatings resulting due to increased content of Al from the Al substrate with an increase in the laser fluence. The coating consisting of optimal amount of HEA and intermetallic phases showed a tenfold decrease wear volume loss (0.01 mm3) as compared to Al substrate showing 0.11 mm3. ", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-019-2573-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "125"
      }
    ], 
    "name": "Tribocorrosion performance of laser additively processed high-entropy alloy coatings on aluminum", 
    "pagination": "272", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4715941e12c463d9fa64ded7e2e96290a50dadff2153f3dbd605746c495e64ef"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-019-2573-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1113052879"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-019-2573-1", 
      "https://app.dimensions.ai/details/publication/pub.1113052879"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78947_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00339-019-2573-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-019-2573-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-019-2573-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-019-2573-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-019-2573-1'


 

This table displays all metadata directly associated to this object as RDF triples.

195 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-019-2573-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nc5a56bf27cb9403fb4b7f30682e5433b
4 schema:citation sg:pub.10.1007/s10103-017-2174-1
5 sg:pub.10.1038/s41529-017-0009-y
6 https://doi.org/10.1002/adem.200300567
7 https://doi.org/10.1016/j.actamat.2016.08.081
8 https://doi.org/10.1016/j.apsusc.2010.09.084
9 https://doi.org/10.1016/j.apsusc.2011.03.083
10 https://doi.org/10.1016/j.apsusc.2013.07.152
11 https://doi.org/10.1016/j.apsusc.2016.11.176
12 https://doi.org/10.1016/j.jallcom.2010.03.111
13 https://doi.org/10.1016/j.jallcom.2013.01.148
14 https://doi.org/10.1016/j.jallcom.2014.03.137
15 https://doi.org/10.1016/j.jmatprotec.2016.09.012
16 https://doi.org/10.1016/j.matchemphys.2017.07.031
17 https://doi.org/10.1016/j.matdes.2010.12.001
18 https://doi.org/10.1016/j.matlet.2014.11.017
19 https://doi.org/10.1016/j.matlet.2014.11.161
20 https://doi.org/10.1016/j.optlastec.2017.03.023
21 https://doi.org/10.1016/j.phpro.2011.03.039
22 https://doi.org/10.1016/j.surfcoat.2006.06.048
23 https://doi.org/10.1016/j.surfcoat.2008.04.067
24 https://doi.org/10.1016/j.surfcoat.2013.12.053
25 https://doi.org/10.1016/j.surfcoat.2014.07.044
26 https://doi.org/10.1016/j.surfcoat.2014.12.013
27 https://doi.org/10.1016/j.surfcoat.2015.10.013
28 https://doi.org/10.1016/j.surfcoat.2018.02.038
29 https://doi.org/10.1063/1.4895137
30 https://doi.org/10.1080/10408436.2015.1053602
31 https://doi.org/10.1080/21663831.2018.1434248
32 https://doi.org/10.3390/cryst8110409
33 https://doi.org/10.3390/cryst9010056
34 https://doi.org/10.3390/met8080603
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description Al–Co–Cr–Fe high-entropy alloy coatings were laser additively produced on aluminum substrate under different laser fluences (17.0–21.2 J/mm2). The resultant coatings consisted of a mixture of high-entropy and intermetallic phases, which resulted in marked improvement in hardness (~ 275–500 HV) as compared to the aluminum substrate (~ 30 HV). Coating corresponding to higher laser fluences showed lower corrosion currents (Icorr ~ 3.6 × 10−4 mA/cm2) and higher linear polarization resistance (LPR) of ~ 14–16 kΩ/cm2 as compared to the aluminum substrate (Icorr ~ 7×10−4 mA/cm2) and ~ 11 kΩ/cm2 in 0.6 M NaCl solution. The behavior of surface properties was analyzed in relation to the variation in fraction of HEA and intermetallic phases within the coatings resulting due to increased content of Al from the Al substrate with an increase in the laser fluence. The coating consisting of optimal amount of HEA and intermetallic phases showed a tenfold decrease wear volume loss (0.01 mm3) as compared to Al substrate showing 0.11 mm3.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N02b36f316ac4428a8905198295d3d112
42 Nb3f3a8e17ded41d2a98184ce4b770f2b
43 sg:journal.1022207
44 schema:name Tribocorrosion performance of laser additively processed high-entropy alloy coatings on aluminum
45 schema:pagination 272
46 schema:productId N5f9f95925a5a4926861627866d502c62
47 N6d325f1f6a8c4ba2b5bd3c686d88d5d1
48 N8ddf2ce3dfb04a9695ce20a89144f418
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113052879
50 https://doi.org/10.1007/s00339-019-2573-1
51 schema:sdDatePublished 2019-04-11T13:18
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher Nc83a37c42c7c49128c16c5cf29197a1d
54 schema:url https://link.springer.com/10.1007%2Fs00339-019-2573-1
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N02b36f316ac4428a8905198295d3d112 schema:issueNumber 4
59 rdf:type schema:PublicationIssue
60 N1606e2eacd65437382f6e51e5d3a69a8 rdf:first Nece3acfc7f034b11ad5e05b9d4856643
61 rdf:rest N538a1b371ba946f683c378c90b6b10ab
62 N1a9afdadf531430e9faccecdcf0a85bf schema:affiliation https://www.grid.ac/institutes/grid.466574.2
63 schema:familyName Argade
64 schema:givenName Gaurav R.
65 rdf:type schema:Person
66 N20dd94b3ad3f4e5c866a51ca098eacf3 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
67 schema:familyName Dahotre
68 schema:givenName Narendra B.
69 rdf:type schema:Person
70 N538a1b371ba946f683c378c90b6b10ab rdf:first N817bc17195d24ca6aa6b681904fbae7a
71 rdf:rest Na74e881205e84375a8fb6da738282af4
72 N5f9f95925a5a4926861627866d502c62 schema:name dimensions_id
73 schema:value pub.1113052879
74 rdf:type schema:PropertyValue
75 N6d325f1f6a8c4ba2b5bd3c686d88d5d1 schema:name readcube_id
76 schema:value 4715941e12c463d9fa64ded7e2e96290a50dadff2153f3dbd605746c495e64ef
77 rdf:type schema:PropertyValue
78 N817bc17195d24ca6aa6b681904fbae7a schema:affiliation https://www.grid.ac/institutes/grid.266869.5
79 schema:familyName Mukherjee
80 schema:givenName Sundeep
81 rdf:type schema:Person
82 N8dcf6f00b3444ecf8287a391824fd8ef schema:affiliation https://www.grid.ac/institutes/grid.466574.2
83 schema:familyName Joshi
84 schema:givenName Sameehan S.
85 rdf:type schema:Person
86 N8ddf2ce3dfb04a9695ce20a89144f418 schema:name doi
87 schema:value 10.1007/s00339-019-2573-1
88 rdf:type schema:PropertyValue
89 N93dca29f17c54c698f7fe1fd5b553829 schema:affiliation https://www.grid.ac/institutes/grid.266869.5
90 schema:familyName Mishra
91 schema:givenName Rajiv S.
92 rdf:type schema:Person
93 Na74e881205e84375a8fb6da738282af4 rdf:first N93dca29f17c54c698f7fe1fd5b553829
94 rdf:rest Nac662267e1204e8a8f3c3487260bc3ca
95 Nac662267e1204e8a8f3c3487260bc3ca rdf:first N20dd94b3ad3f4e5c866a51ca098eacf3
96 rdf:rest rdf:nil
97 Nb3f3a8e17ded41d2a98184ce4b770f2b schema:volumeNumber 125
98 rdf:type schema:PublicationVolume
99 Nb779bb5ca8f046a8b7a9dafdc86b5abb rdf:first N8dcf6f00b3444ecf8287a391824fd8ef
100 rdf:rest N1606e2eacd65437382f6e51e5d3a69a8
101 Nc5a56bf27cb9403fb4b7f30682e5433b rdf:first N1a9afdadf531430e9faccecdcf0a85bf
102 rdf:rest Nb779bb5ca8f046a8b7a9dafdc86b5abb
103 Nc83a37c42c7c49128c16c5cf29197a1d schema:name Springer Nature - SN SciGraph project
104 rdf:type schema:Organization
105 Nece3acfc7f034b11ad5e05b9d4856643 schema:affiliation https://www.grid.ac/institutes/grid.187073.a
106 schema:familyName Ayyagari
107 schema:givenName Aditya V.
108 rdf:type schema:Person
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:journal.1022207 schema:issn 0947-8396
116 1432-0630
117 schema:name Applied Physics A
118 rdf:type schema:Periodical
119 sg:pub.10.1007/s10103-017-2174-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084023872
120 https://doi.org/10.1007/s10103-017-2174-1
121 rdf:type schema:CreativeWork
122 sg:pub.10.1038/s41529-017-0009-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1091272889
123 https://doi.org/10.1038/s41529-017-0009-y
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1002/adem.200300567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040529021
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.actamat.2016.08.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022069941
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.apsusc.2010.09.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018754079
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.apsusc.2011.03.083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050149178
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apsusc.2013.07.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025443650
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.apsusc.2016.11.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045810083
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.jallcom.2010.03.111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045021337
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.jallcom.2013.01.148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002580781
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.jallcom.2014.03.137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044973799
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.jmatprotec.2016.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020774674
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.matchemphys.2017.07.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090575366
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.matdes.2010.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024146372
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.matlet.2014.11.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022807917
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.matlet.2014.11.161 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029457856
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.optlastec.2017.03.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084100328
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.phpro.2011.03.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048747168
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.surfcoat.2006.06.048 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023819268
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.surfcoat.2008.04.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006930467
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.surfcoat.2013.12.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031579215
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.surfcoat.2014.07.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011343481
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.surfcoat.2014.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007905097
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.surfcoat.2015.10.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001312145
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.surfcoat.2018.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101006611
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1063/1.4895137 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002649651
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1080/10408436.2015.1053602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001947215
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1080/21663831.2018.1434248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101150711
176 rdf:type schema:CreativeWork
177 https://doi.org/10.3390/cryst8110409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107948718
178 rdf:type schema:CreativeWork
179 https://doi.org/10.3390/cryst9010056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111566228
180 rdf:type schema:CreativeWork
181 https://doi.org/10.3390/met8080603 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105978668
182 rdf:type schema:CreativeWork
183 https://www.grid.ac/institutes/grid.187073.a schema:alternateName Argonne National Laboratory
184 schema:name Argonne National Laboratory, Argonne, IL, USA
185 Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
186 rdf:type schema:Organization
187 https://www.grid.ac/institutes/grid.266869.5 schema:alternateName University of North Texas
188 schema:name Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
189 Laboratory of Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
190 rdf:type schema:Organization
191 https://www.grid.ac/institutes/grid.466574.2 schema:alternateName Cummins (United States)
192 schema:name Cummins, Columbus, IN, USA
193 Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
194 Laboratory of Laser Aided Additive and Subtractive Manufacturing, Department of Materials Science and Engineering, University of North Texas, Denton, TX, USA
195 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...