Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-03

AUTHORS

Mario Garcia-Lechuga, Javier Solis, Jan Siegel

ABSTRACT

The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump–probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one. More... »

PAGES

221

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-018-1650-1

DOI

http://dx.doi.org/10.1007/s00339-018-1650-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100918130


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Spanish Center for Pulsed Lasers", 
          "id": "https://www.grid.ac/institutes/grid.494576.d", 
          "name": [
            "Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Cient\u00edfica (IO, CSIC), Serrano 121, 28006, Madrid, Spain", 
            "Centro de L\u00e1seres Pulsados (CLPU), Building M5 Scientific Park, 37185, Villamayor, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garcia-Lechuga", 
        "givenName": "Mario", 
        "id": "sg:person.016363530631.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363530631.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Spanish National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.4711.3", 
          "name": [
            "Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Cient\u00edfica (IO, CSIC), Serrano 121, 28006, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solis", 
        "givenName": "Javier", 
        "id": "sg:person.0743300370.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743300370.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Spanish National Research Council", 
          "id": "https://www.grid.ac/institutes/grid.4711.3", 
          "name": [
            "Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Cient\u00edfica (IO, CSIC), Serrano 121, 28006, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegel", 
        "givenName": "Jan", 
        "id": "sg:person.01251636716.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251636716.18"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1063/1.4948262", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002858806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2011.12.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005387225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4895926", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018972723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/lsa.2014.30", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020102785", 
          "https://doi.org/10.1038/lsa.2014.30"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390051041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025798068", 
          "https://doi.org/10.1007/s003390051041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(99)00440-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026459922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4895833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028919516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4073(99)00088-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034740207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.568029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039919011", 
          "https://doi.org/10.1134/1.568029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4892158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047425911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3479919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057959024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.358900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057980202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.035101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.035101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060616298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.054113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.81.054113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060631542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.167602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.99.167602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060834768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.14.003319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065168775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.2.000595", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065170410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.27.001065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065173161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.24.017572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065208342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.41.003245", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065239379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.7.000196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065240672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091665566", 
          "https://doi.org/10.1038/nphys4265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys4265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091665566", 
          "https://doi.org/10.1038/nphys4265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41467-017-00907-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092015762", 
          "https://doi.org/10.1038/s41467-017-00907-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.214114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102596185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.95.214114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1102596185"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-03", 
    "datePublishedReg": "2018-03-01", 
    "description": "The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump\u2013probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-018-1650-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "124"
      }
    ], 
    "name": "Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy", 
    "pagination": "221", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "78242b444fb5a9c8ac3eaefec0a9267dee8ba6924fa4d79a44ab59e8c0ab57e8"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-018-1650-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100918130"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-018-1650-1", 
      "https://app.dimensions.ai/details/publication/pub.1100918130"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-018-1650-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-018-1650-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-018-1650-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-018-1650-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-018-1650-1'


 

This table displays all metadata directly associated to this object as RDF triples.

159 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-018-1650-1 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Ndc3978d43ac84b7a90142239b9fa72ad
4 schema:citation sg:pub.10.1007/s003390051041
5 sg:pub.10.1038/lsa.2014.30
6 sg:pub.10.1038/nphys4265
7 sg:pub.10.1038/s41467-017-00907-8
8 sg:pub.10.1134/1.568029
9 https://doi.org/10.1016/j.apsusc.2011.12.020
10 https://doi.org/10.1016/s0022-4073(99)00088-6
11 https://doi.org/10.1016/s0169-4332(99)00440-7
12 https://doi.org/10.1063/1.3479919
13 https://doi.org/10.1063/1.358900
14 https://doi.org/10.1063/1.4892158
15 https://doi.org/10.1063/1.4895833
16 https://doi.org/10.1063/1.4895926
17 https://doi.org/10.1063/1.4948262
18 https://doi.org/10.1103/physrevb.73.035101
19 https://doi.org/10.1103/physrevb.81.054113
20 https://doi.org/10.1103/physrevb.95.214114
21 https://doi.org/10.1103/physrevlett.81.224
22 https://doi.org/10.1103/physrevlett.99.167602
23 https://doi.org/10.1364/josab.14.003319
24 https://doi.org/10.1364/josab.2.000595
25 https://doi.org/10.1364/josab.27.001065
26 https://doi.org/10.1364/oe.24.017572
27 https://doi.org/10.1364/ol.41.003245
28 https://doi.org/10.1364/ol.7.000196
29 schema:datePublished 2018-03
30 schema:datePublishedReg 2018-03-01
31 schema:description The physical origin of material removal in dielectrics upon femtosecond laser pulse irradiation (800 nm, 120 fs pulse duration) has been investigated at fluences slightly above ablation threshold. Making use of a versatile pump–probe microscopy setup, the dynamics and different key stages of the ablation process in lithium niobate have been monitored. The use of two different illumination wavelengths, 400 and 800 nm, and a rigorous image analysis combined with theoretical modelling, enables drawing a clear picture of the material excitation and expansion stages. Immediately after excitation, a dense electron plasma is generated. Few picoseconds later, direct evidence of a rarefaction wave propagating into the bulk is obtained, with an estimated speed of 3650 m/s. This process marks the onset of material expansion, which is confirmed by the appearance of transient Newton rings, which dynamically change during the expansion up to approximately 1 ns. Exploring delays up to 15 ns, a second dynamic Newton ring pattern is observed, consistent with the formation of a second ablation front propagating five times slower than the first one.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree true
35 schema:isPartOf N1c5212e387da425e8c692ae4a59586aa
36 N68baa2a8e1564615b5abddc9716fb0e7
37 sg:journal.1022207
38 schema:name Key stages of material expansion in dielectrics upon femtosecond laser ablation revealed by double-color illumination time-resolved microscopy
39 schema:pagination 221
40 schema:productId N3d7db4bfb95a45d292c6e6d6e9b7d3ab
41 Na6363d597ba64a8f9751d17b983384c4
42 Nc3460cb4ae23456fb78205393ca9c867
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100918130
44 https://doi.org/10.1007/s00339-018-1650-1
45 schema:sdDatePublished 2019-04-10T13:06
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N28ddc6f34a9444839824a9515d82b556
48 schema:url http://link.springer.com/10.1007/s00339-018-1650-1
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N064de9da169a4c8493fe174e6fc3bb60 rdf:first sg:person.01251636716.18
53 rdf:rest rdf:nil
54 N1c5212e387da425e8c692ae4a59586aa schema:issueNumber 3
55 rdf:type schema:PublicationIssue
56 N28ddc6f34a9444839824a9515d82b556 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N3d7db4bfb95a45d292c6e6d6e9b7d3ab schema:name doi
59 schema:value 10.1007/s00339-018-1650-1
60 rdf:type schema:PropertyValue
61 N68baa2a8e1564615b5abddc9716fb0e7 schema:volumeNumber 124
62 rdf:type schema:PublicationVolume
63 Na6363d597ba64a8f9751d17b983384c4 schema:name readcube_id
64 schema:value 78242b444fb5a9c8ac3eaefec0a9267dee8ba6924fa4d79a44ab59e8c0ab57e8
65 rdf:type schema:PropertyValue
66 Nbb59cf8e1b774037a64c1268cfb2e62c rdf:first sg:person.0743300370.25
67 rdf:rest N064de9da169a4c8493fe174e6fc3bb60
68 Nc3460cb4ae23456fb78205393ca9c867 schema:name dimensions_id
69 schema:value pub.1100918130
70 rdf:type schema:PropertyValue
71 Ndc3978d43ac84b7a90142239b9fa72ad rdf:first sg:person.016363530631.74
72 rdf:rest Nbb59cf8e1b774037a64c1268cfb2e62c
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
77 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
78 rdf:type schema:DefinedTerm
79 sg:journal.1022207 schema:issn 0947-8396
80 1432-0630
81 schema:name Applied Physics A
82 rdf:type schema:Periodical
83 sg:person.01251636716.18 schema:affiliation https://www.grid.ac/institutes/grid.4711.3
84 schema:familyName Siegel
85 schema:givenName Jan
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251636716.18
87 rdf:type schema:Person
88 sg:person.016363530631.74 schema:affiliation https://www.grid.ac/institutes/grid.494576.d
89 schema:familyName Garcia-Lechuga
90 schema:givenName Mario
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016363530631.74
92 rdf:type schema:Person
93 sg:person.0743300370.25 schema:affiliation https://www.grid.ac/institutes/grid.4711.3
94 schema:familyName Solis
95 schema:givenName Javier
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0743300370.25
97 rdf:type schema:Person
98 sg:pub.10.1007/s003390051041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025798068
99 https://doi.org/10.1007/s003390051041
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/lsa.2014.30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020102785
102 https://doi.org/10.1038/lsa.2014.30
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/nphys4265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091665566
105 https://doi.org/10.1038/nphys4265
106 rdf:type schema:CreativeWork
107 sg:pub.10.1038/s41467-017-00907-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092015762
108 https://doi.org/10.1038/s41467-017-00907-8
109 rdf:type schema:CreativeWork
110 sg:pub.10.1134/1.568029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039919011
111 https://doi.org/10.1134/1.568029
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.apsusc.2011.12.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005387225
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0022-4073(99)00088-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034740207
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0169-4332(99)00440-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026459922
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.3479919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057959024
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.358900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057980202
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.4892158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047425911
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.4895833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028919516
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1063/1.4895926 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018972723
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.4948262 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002858806
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.73.035101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060616298
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.81.054113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060631542
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.95.214114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1102596185
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.81.224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818075
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.99.167602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060834768
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1364/josab.14.003319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065168775
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1364/josab.2.000595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065170410
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1364/josab.27.001065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065173161
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/oe.24.017572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065208342
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1364/ol.41.003245 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065239379
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1364/ol.7.000196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065240672
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.4711.3 schema:alternateName Spanish National Research Council
154 schema:name Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Científica (IO, CSIC), Serrano 121, 28006, Madrid, Spain
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.494576.d schema:alternateName Spanish Center for Pulsed Lasers
157 schema:name Centro de Láseres Pulsados (CLPU), Building M5 Scientific Park, 37185, Villamayor, Spain
158 Laser Processing Group, Instituto de Optica, Consejo Superior de Investigaciones Científica (IO, CSIC), Serrano 121, 28006, Madrid, Spain
159 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...