Fabrication and characterization of materials and structures for hybrid organic–inorganic photonics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-03

AUTHORS

Daniel Haško, Jozef Chovan, František Uherek

ABSTRACT

Hybrid organic–inorganic integrated photonics integrate the organic material, as a part of active layer, with inorganic structure, and it is the organic component that extends the functionalities as compared to inorganic photonics. This paper presents the results of fabrication and characterization of inorganic and organic layers, as well as of hybrid organic–inorganic structures. Inorganic oxide and nitride materials and structures were grown using plasma enhanced chemical vapor deposition. As a substrate for tested organic layers and for preparation of multilayer structures, commercially available SiO2 created by thermal oxidation on Si was used. The hybrid organic–inorganic structures were prepared by spin coating of organic materials on SiO2/Si inorganic structures. As the basic photonics devices, the testing strip inorganic and organic waveguides were fabricated using reactive ion etching. The shape of fabricated testing waveguides was trapezoidal and etched structures were able to guide the radiation. The presented technology enabled to prepare hybrid organic–inorganic structures of comparable dimensions and shape. The fabricated waveguides dimensions and shape will be used for optimisation and design of new lithographic mask to prepare photonic components with required characteristics. More... »

PAGES

203

References to SciGraph publications

  • 2010-07. Organic photonics for communications in NATURE PHOTONICS
  • 2013-08. Development and application of an AFM probe soft approach method in BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00339-017-0858-9

    DOI

    http://dx.doi.org/10.1007/s00339-017-0858-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1084020854


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "International Laser Center", 
              "id": "https://www.grid.ac/institutes/grid.419374.c", 
              "name": [
                "International Laser Centre, Ilkovi\u010dova 3, 841 04, Bratislava, Slovak Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ha\u0161ko", 
            "givenName": "Daniel", 
            "id": "sg:person.01354615421.44", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354615421.44"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Laser Center", 
              "id": "https://www.grid.ac/institutes/grid.419374.c", 
              "name": [
                "International Laser Centre, Ilkovi\u010dova 3, 841 04, Bratislava, Slovak Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chovan", 
            "givenName": "Jozef", 
            "id": "sg:person.01327611675.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327611675.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Slovak University of Technology in Bratislava", 
              "id": "https://www.grid.ac/institutes/grid.440789.6", 
              "name": [
                "International Laser Centre, Ilkovi\u010dova 3, 841 04, Bratislava, Slovak Republic", 
                "Faculty of Electrical Engineering and Information Technology, Institute of Electronic and Photonics, Slovak University of Technology, Ilkovi\u010dova 3, 812 19, Bratislava, Slovak Republic"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Uherek", 
            "givenName": "Franti\u0161ek", 
            "id": "sg:person.0616316721.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616316721.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1039/b909690f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009848658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/b909690f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009848658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0268-1242/23/6/064002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025168648"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/1521-4095(20021002)14:19<1339::aid-adma1339>3.0.co;2-o", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025427849"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1038859111", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1038859111", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.synthmet.2015.01.020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046974278"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2010.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048514360", 
              "https://doi.org/10.1038/nphoton.2010.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2010.160", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048514360", 
              "https://doi.org/10.1038/nphoton.2010.160"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s1062873813080236", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051770790", 
              "https://doi.org/10.3103/s1062873813080236"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm1022344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055413978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/cm1022344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055413978"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jlt.2005.850816", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061283110"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jlt.2014.2321498", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061287658"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.12720/lnpo.1.1.14-17", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064636706"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-03", 
        "datePublishedReg": "2017-03-01", 
        "description": "Hybrid organic\u2013inorganic integrated photonics integrate the organic material, as a part of active layer, with inorganic structure, and it is the organic component that extends the functionalities as compared to inorganic photonics. This paper presents the results of fabrication and characterization of inorganic and organic layers, as well as of hybrid organic\u2013inorganic structures. Inorganic oxide and nitride materials and structures were grown using plasma enhanced chemical vapor deposition. As a substrate for tested organic layers and for preparation of multilayer structures, commercially available SiO2 created by thermal oxidation on Si was used. The hybrid organic\u2013inorganic structures were prepared by spin coating of organic materials on SiO2/Si inorganic structures. As the basic photonics devices, the testing strip inorganic and organic waveguides were fabricated using reactive ion etching. The shape of fabricated testing waveguides was trapezoidal and etched structures were able to guide the radiation. The presented technology enabled to prepare hybrid organic\u2013inorganic structures of comparable dimensions and shape. The fabricated waveguides dimensions and shape will be used for optimisation and design of new lithographic mask to prepare photonic components with required characteristics.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00339-017-0858-9", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4358660", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.4365249", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1022207", 
            "issn": [
              "0947-8396", 
              "1432-0630"
            ], 
            "name": "Applied Physics A", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "123"
          }
        ], 
        "name": "Fabrication and characterization of materials and structures for hybrid organic\u2013inorganic photonics", 
        "pagination": "203", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ecef593082ceb8234e8a6b8a4b64c206d6ea4ad075ab93ebb74631b82f4469d3"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00339-017-0858-9"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1084020854"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00339-017-0858-9", 
          "https://app.dimensions.ai/details/publication/pub.1084020854"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:30", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113647_00000004.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00339-017-0858-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-017-0858-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-017-0858-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-017-0858-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-017-0858-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      21 PREDICATES      38 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00339-017-0858-9 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N68dd7d7f3bd6458d8b27cb17ef706cee
    4 schema:citation sg:pub.10.1038/nphoton.2010.160
    5 sg:pub.10.3103/s1062873813080236
    6 https://app.dimensions.ai/details/publication/pub.1038859111
    7 https://doi.org/10.1002/1521-4095(20021002)14:19<1339::aid-adma1339>3.0.co;2-o
    8 https://doi.org/10.1016/j.synthmet.2015.01.020
    9 https://doi.org/10.1021/cm1022344
    10 https://doi.org/10.1039/b909690f
    11 https://doi.org/10.1088/0268-1242/23/6/064002
    12 https://doi.org/10.1109/jlt.2005.850816
    13 https://doi.org/10.1109/jlt.2014.2321498
    14 https://doi.org/10.12720/lnpo.1.1.14-17
    15 schema:datePublished 2017-03
    16 schema:datePublishedReg 2017-03-01
    17 schema:description Hybrid organic–inorganic integrated photonics integrate the organic material, as a part of active layer, with inorganic structure, and it is the organic component that extends the functionalities as compared to inorganic photonics. This paper presents the results of fabrication and characterization of inorganic and organic layers, as well as of hybrid organic–inorganic structures. Inorganic oxide and nitride materials and structures were grown using plasma enhanced chemical vapor deposition. As a substrate for tested organic layers and for preparation of multilayer structures, commercially available SiO2 created by thermal oxidation on Si was used. The hybrid organic–inorganic structures were prepared by spin coating of organic materials on SiO2/Si inorganic structures. As the basic photonics devices, the testing strip inorganic and organic waveguides were fabricated using reactive ion etching. The shape of fabricated testing waveguides was trapezoidal and etched structures were able to guide the radiation. The presented technology enabled to prepare hybrid organic–inorganic structures of comparable dimensions and shape. The fabricated waveguides dimensions and shape will be used for optimisation and design of new lithographic mask to prepare photonic components with required characteristics.
    18 schema:genre research_article
    19 schema:inLanguage en
    20 schema:isAccessibleForFree false
    21 schema:isPartOf N78f718c5d910471ab81b1ed0e52253a3
    22 Nf8b586991866463dbe57650db94850d6
    23 sg:journal.1022207
    24 schema:name Fabrication and characterization of materials and structures for hybrid organic–inorganic photonics
    25 schema:pagination 203
    26 schema:productId N25cacab1bb2347aa95c57c683b82ffbc
    27 N6352fb25edea4e12b3284168a806a668
    28 N6e045aa5efbd41e78f9de475c2531d7e
    29 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084020854
    30 https://doi.org/10.1007/s00339-017-0858-9
    31 schema:sdDatePublished 2019-04-11T10:30
    32 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    33 schema:sdPublisher N9a15e44c829840288b9a954637d488a3
    34 schema:url https://link.springer.com/10.1007%2Fs00339-017-0858-9
    35 sgo:license sg:explorer/license/
    36 sgo:sdDataset articles
    37 rdf:type schema:ScholarlyArticle
    38 N25cacab1bb2347aa95c57c683b82ffbc schema:name doi
    39 schema:value 10.1007/s00339-017-0858-9
    40 rdf:type schema:PropertyValue
    41 N6352fb25edea4e12b3284168a806a668 schema:name dimensions_id
    42 schema:value pub.1084020854
    43 rdf:type schema:PropertyValue
    44 N68dd7d7f3bd6458d8b27cb17ef706cee rdf:first sg:person.01354615421.44
    45 rdf:rest N9b9146f674464545bd691ba6b5596e8a
    46 N6e045aa5efbd41e78f9de475c2531d7e schema:name readcube_id
    47 schema:value ecef593082ceb8234e8a6b8a4b64c206d6ea4ad075ab93ebb74631b82f4469d3
    48 rdf:type schema:PropertyValue
    49 N78f718c5d910471ab81b1ed0e52253a3 schema:volumeNumber 123
    50 rdf:type schema:PublicationVolume
    51 N9a15e44c829840288b9a954637d488a3 schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 N9b9146f674464545bd691ba6b5596e8a rdf:first sg:person.01327611675.32
    54 rdf:rest Nf525b534fb5042ab904624df638a01d5
    55 Nf525b534fb5042ab904624df638a01d5 rdf:first sg:person.0616316721.49
    56 rdf:rest rdf:nil
    57 Nf8b586991866463dbe57650db94850d6 schema:issueNumber 3
    58 rdf:type schema:PublicationIssue
    59 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Engineering
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Materials Engineering
    64 rdf:type schema:DefinedTerm
    65 sg:grant.4358660 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-017-0858-9
    66 rdf:type schema:MonetaryGrant
    67 sg:grant.4365249 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-017-0858-9
    68 rdf:type schema:MonetaryGrant
    69 sg:journal.1022207 schema:issn 0947-8396
    70 1432-0630
    71 schema:name Applied Physics A
    72 rdf:type schema:Periodical
    73 sg:person.01327611675.32 schema:affiliation https://www.grid.ac/institutes/grid.419374.c
    74 schema:familyName Chovan
    75 schema:givenName Jozef
    76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01327611675.32
    77 rdf:type schema:Person
    78 sg:person.01354615421.44 schema:affiliation https://www.grid.ac/institutes/grid.419374.c
    79 schema:familyName Haško
    80 schema:givenName Daniel
    81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354615421.44
    82 rdf:type schema:Person
    83 sg:person.0616316721.49 schema:affiliation https://www.grid.ac/institutes/grid.440789.6
    84 schema:familyName Uherek
    85 schema:givenName František
    86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616316721.49
    87 rdf:type schema:Person
    88 sg:pub.10.1038/nphoton.2010.160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048514360
    89 https://doi.org/10.1038/nphoton.2010.160
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.3103/s1062873813080236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051770790
    92 https://doi.org/10.3103/s1062873813080236
    93 rdf:type schema:CreativeWork
    94 https://app.dimensions.ai/details/publication/pub.1038859111 schema:CreativeWork
    95 https://doi.org/10.1002/1521-4095(20021002)14:19<1339::aid-adma1339>3.0.co;2-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1025427849
    96 rdf:type schema:CreativeWork
    97 https://doi.org/10.1016/j.synthmet.2015.01.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046974278
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1021/cm1022344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055413978
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1039/b909690f schema:sameAs https://app.dimensions.ai/details/publication/pub.1009848658
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1088/0268-1242/23/6/064002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025168648
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1109/jlt.2005.850816 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061283110
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1109/jlt.2014.2321498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061287658
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.12720/lnpo.1.1.14-17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064636706
    110 rdf:type schema:CreativeWork
    111 https://www.grid.ac/institutes/grid.419374.c schema:alternateName International Laser Center
    112 schema:name International Laser Centre, Ilkovičova 3, 841 04, Bratislava, Slovak Republic
    113 rdf:type schema:Organization
    114 https://www.grid.ac/institutes/grid.440789.6 schema:alternateName Slovak University of Technology in Bratislava
    115 schema:name Faculty of Electrical Engineering and Information Technology, Institute of Electronic and Photonics, Slovak University of Technology, Ilkovičova 3, 812 19, Bratislava, Slovak Republic
    116 International Laser Centre, Ilkovičova 3, 841 04, Bratislava, Slovak Republic
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...