Laser processing with specially designed laser beam View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-03-21

AUTHORS

A. A. Asratyan, N. A. Bulychev, I. N. Feofanov, M. A. Kazaryan, V. I. Krasovskii, N. A. Lyabin, L. A. Pogosyan, V. I. Sachkov, R. A. Zakharyan

ABSTRACT

The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80–100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10–30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam. More... »

PAGES

434

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-016-9797-0

DOI

http://dx.doi.org/10.1007/s00339-016-9797-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008049957


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gamalei Institute of Epidemiology and Microbiology, Gamalei Str., 18, 123098, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.418129.7", 
          "name": [
            "Gamalei Institute of Epidemiology and Microbiology, Gamalei Str., 18, 123098, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Asratyan", 
        "givenName": "A. A.", 
        "id": "sg:person.011007610046.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007610046.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulychev", 
        "givenName": "N. A.", 
        "id": "sg:person.011471413375.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471413375.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feofanov", 
        "givenName": "I. N.", 
        "id": "sg:person.013027715345.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013027715345.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.425806.d", 
          "name": [
            "P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kazaryan", 
        "givenName": "M. A.", 
        "id": "sg:person.010570671107.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Research Nuclear University \u201cMEPhI\u201d, 31, Kashirskoe highway, 15409, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova st., 38, 117942, Moscow, Russia", 
            "National Research Nuclear University \u201cMEPhI\u201d, 31, Kashirskoe highway, 15409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krasovskii", 
        "givenName": "V. I.", 
        "id": "sg:person.014301251101.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301251101.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Stock Company \u201cIstok\u201d, Vokzalnaya Str., 2A, Fryazino, 141190, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Joint Stock Company \u201cIstok\u201d, Vokzalnaya Str., 2A, Fryazino, 141190, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lyabin", 
        "givenName": "N. A.", 
        "id": "sg:person.012011722541.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011722541.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Stock Company \u201cIstok\u201d, Vokzalnaya Str., 2A, Fryazino, 141190, Moscow Region, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Joint Stock Company \u201cIstok\u201d, Vokzalnaya Str., 2A, Fryazino, 141190, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pogosyan", 
        "givenName": "L. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Siberian Physical-Technical Institute of the Tomsk State University, pl. Novo-Sobornaya, 1, 634050, Tomsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.77602.34", 
          "name": [
            "Siberian Physical-Technical Institute of the Tomsk State University, pl. Novo-Sobornaya, 1, 634050, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sachkov", 
        "givenName": "V. I.", 
        "id": "sg:person.015076631501.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076631501.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova st., 38, 117942, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova st., 38, 117942, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zakharyan", 
        "givenName": "R. A.", 
        "id": "sg:person.012300450145.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300450145.48"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2016-03-21", 
    "datePublishedReg": "2016-03-21", 
    "description": "The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30\u00a0W. The active elements were pumped by current pulses of duration 80\u2013100\u00a0ns. The duration of laser generation pulses was up to 25\u00a0ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5\u00a0\u00b5m, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10\u201330\u00a0kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100\u00a0\u00b5m) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300\u00a0\u00b5m, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10\u00a0\u00b5m to 1\u00a0mm with different thermal parameters and specially designed laser beam.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00339-016-9797-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6751185", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6756199", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6755274", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.6755225", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "keywords": [
      "laser beam", 
      "laser system", 
      "laser pulse repetition rate", 
      "microscale details", 
      "original optical scheme", 
      "output laser beam", 
      "pulse repetition rate", 
      "copper vapor laser", 
      "optical scheme", 
      "generation pulse", 
      "optical elements", 
      "repetition rate", 
      "vapor laser", 
      "unstable cavity", 
      "direct writing", 
      "laser processing", 
      "average power", 
      "beam", 
      "special mirror", 
      "beam dimensions", 
      "high-precision micromachining", 
      "substrate surface", 
      "different thermal parameters", 
      "current pulses", 
      "energy characteristics", 
      "pulses", 
      "ns", 
      "variety of metals", 
      "laser", 
      "mirror", 
      "sapphire", 
      "narrow groove", 
      "silicon", 
      "active elements", 
      "diamond", 
      "micromachining", 
      "thickness", 
      "cavity", 
      "nonmetal materials", 
      "stainless steel", 
      "configuration", 
      "microfabrication", 
      "reflector", 
      "generator unit", 
      "nanoparticles", 
      "metals", 
      "thermal parameters", 
      "spatial configuration", 
      "detail", 
      "permissible dimensions", 
      "nonmetals", 
      "surface", 
      "materials", 
      "micro", 
      "interaction", 
      "objects", 
      "power", 
      "coatings", 
      "system", 
      "microscale", 
      "experiments", 
      "steel", 
      "elements", 
      "molybdenum", 
      "possibility", 
      "dimensions", 
      "copper", 
      "parameters", 
      "drilling", 
      "scheme", 
      "large amount", 
      "groove", 
      "cutting", 
      "processing", 
      "method", 
      "zone", 
      "characteristics", 
      "variety", 
      "duration", 
      "information", 
      "amount", 
      "rate", 
      "units", 
      "writing", 
      "treatment", 
      "special spatial configurations", 
      "self-conjugate cavity", 
      "duration 80", 
      "laser generation pulses", 
      "minimum permissible dimensions", 
      "high-quality microscale details"
    ], 
    "name": "Laser processing with specially designed laser beam", 
    "pagination": "434", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008049957"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-016-9797-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-016-9797-0", 
      "https://app.dimensions.ai/details/publication/pub.1008049957"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_703.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00339-016-9797-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-9797-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-9797-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-9797-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-9797-0'


 

This table displays all metadata directly associated to this object as RDF triples.

228 TRIPLES      21 PREDICATES      116 URIs      108 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-016-9797-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N375b66fc314f488987d61ee677a84ad9
4 schema:datePublished 2016-03-21
5 schema:datePublishedReg 2016-03-21
6 schema:description The possibility of using laser systems to form beams with special spatial configurations has been studied. The laser systems applied had a self-conjugate cavity based on the elements of copper vapor lasers (LT-5Cu, LT-10Cu, LT-30Cu) with an average power of 5, 10, or 30 W. The active elements were pumped by current pulses of duration 80–100 ns. The duration of laser generation pulses was up to 25 ns. The generator unit included an unstable cavity, where one reflector was a special mirror with a reflecting coating. Various original optical schemes used were capable of exploring spatial configurations and energy characteristics of output laser beams in their interaction with micro- and nanoparticles fabricated from various materials. In these experiments, the beam dimensions of the obtained zones varied from 0.3 to 5 µm, which is comparable with the minimum permissible dimensions determined by the optical elements applied. This method is useful in transforming a large amount of information at the laser pulse repetition rate of 10–30 kHz. It was possible to realize the high-precision micromachining and microfabrication of microscale details by direct writing, cutting and drilling (with the cutting width and through-hole diameters ranging from 3 to 100 µm) and produce microscale, deep, intricate and narrow grooves on substrate surfaces of metals and nonmetal materials. This system is used for producing high-quality microscale details without moving the object under treatment. It can also be used for microcutting and microdrilling in a variety of metals such as molybdenum, copper and stainless steel, with a thickness of up to 300 µm, and in nonmetals such as silicon, sapphire and diamond with a thickness ranging from 10 µm to 1 mm with different thermal parameters and specially designed laser beam.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N37397abc783546bdb13f8ecb4c354ffb
11 Nfbb10fcc6425434fa719713f431127af
12 sg:journal.1022207
13 schema:keywords active elements
14 amount
15 average power
16 beam
17 beam dimensions
18 cavity
19 characteristics
20 coatings
21 configuration
22 copper
23 copper vapor laser
24 current pulses
25 cutting
26 detail
27 diamond
28 different thermal parameters
29 dimensions
30 direct writing
31 drilling
32 duration
33 duration 80
34 elements
35 energy characteristics
36 experiments
37 generation pulse
38 generator unit
39 groove
40 high-precision micromachining
41 high-quality microscale details
42 information
43 interaction
44 large amount
45 laser
46 laser beam
47 laser generation pulses
48 laser processing
49 laser pulse repetition rate
50 laser system
51 materials
52 metals
53 method
54 micro
55 microfabrication
56 micromachining
57 microscale
58 microscale details
59 minimum permissible dimensions
60 mirror
61 molybdenum
62 nanoparticles
63 narrow groove
64 nonmetal materials
65 nonmetals
66 ns
67 objects
68 optical elements
69 optical scheme
70 original optical scheme
71 output laser beam
72 parameters
73 permissible dimensions
74 possibility
75 power
76 processing
77 pulse repetition rate
78 pulses
79 rate
80 reflector
81 repetition rate
82 sapphire
83 scheme
84 self-conjugate cavity
85 silicon
86 spatial configuration
87 special mirror
88 special spatial configurations
89 stainless steel
90 steel
91 substrate surface
92 surface
93 system
94 thermal parameters
95 thickness
96 treatment
97 units
98 unstable cavity
99 vapor laser
100 variety
101 variety of metals
102 writing
103 zone
104 schema:name Laser processing with specially designed laser beam
105 schema:pagination 434
106 schema:productId N55fb600dbfe94a3582af9e519893cac9
107 Nc84ad19103c44af0a15f017f32ffa322
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008049957
109 https://doi.org/10.1007/s00339-016-9797-0
110 schema:sdDatePublished 2021-12-01T19:36
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N696840540d874523add036e0a6263460
113 schema:url https://doi.org/10.1007/s00339-016-9797-0
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N0757648884cd42fda9d4a93c458520e7 rdf:first Nc43853ee4d0a48dd85221324ebd5a380
118 rdf:rest N57b0ba5723c04d34a85975971223de52
119 N37397abc783546bdb13f8ecb4c354ffb schema:volumeNumber 122
120 rdf:type schema:PublicationVolume
121 N375b66fc314f488987d61ee677a84ad9 rdf:first sg:person.011007610046.20
122 rdf:rest N7cdc5f222b9d4e84b600983678f96cf0
123 N433ebe317eda48d488daade8ecf91673 rdf:first sg:person.014301251101.65
124 rdf:rest Nd2d6c3bc45344965acc3937b8f6dea49
125 N55fb600dbfe94a3582af9e519893cac9 schema:name dimensions_id
126 schema:value pub.1008049957
127 rdf:type schema:PropertyValue
128 N57b0ba5723c04d34a85975971223de52 rdf:first sg:person.015076631501.56
129 rdf:rest Nc9ec5238b0314965a9ba3e4f82f5dc8e
130 N696840540d874523add036e0a6263460 schema:name Springer Nature - SN SciGraph project
131 rdf:type schema:Organization
132 N7cdc5f222b9d4e84b600983678f96cf0 rdf:first sg:person.011471413375.17
133 rdf:rest Nd77fbc58b683452fa90468ba93dd4d1d
134 Nc43853ee4d0a48dd85221324ebd5a380 schema:affiliation grid-institutes:None
135 schema:familyName Pogosyan
136 schema:givenName L. A.
137 rdf:type schema:Person
138 Nc84ad19103c44af0a15f017f32ffa322 schema:name doi
139 schema:value 10.1007/s00339-016-9797-0
140 rdf:type schema:PropertyValue
141 Nc9ec5238b0314965a9ba3e4f82f5dc8e rdf:first sg:person.012300450145.48
142 rdf:rest rdf:nil
143 Ncc7df1b550a14442819e70f96c0f7970 rdf:first sg:person.010570671107.78
144 rdf:rest N433ebe317eda48d488daade8ecf91673
145 Nd2d6c3bc45344965acc3937b8f6dea49 rdf:first sg:person.012011722541.28
146 rdf:rest N0757648884cd42fda9d4a93c458520e7
147 Nd77fbc58b683452fa90468ba93dd4d1d rdf:first sg:person.013027715345.10
148 rdf:rest Ncc7df1b550a14442819e70f96c0f7970
149 Nfbb10fcc6425434fa719713f431127af schema:issueNumber 4
150 rdf:type schema:PublicationIssue
151 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
152 schema:name Physical Sciences
153 rdf:type schema:DefinedTerm
154 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
155 schema:name Other Physical Sciences
156 rdf:type schema:DefinedTerm
157 sg:grant.6751185 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-016-9797-0
158 rdf:type schema:MonetaryGrant
159 sg:grant.6755225 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-016-9797-0
160 rdf:type schema:MonetaryGrant
161 sg:grant.6755274 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-016-9797-0
162 rdf:type schema:MonetaryGrant
163 sg:grant.6756199 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-016-9797-0
164 rdf:type schema:MonetaryGrant
165 sg:journal.1022207 schema:issn 0947-8396
166 1432-0630
167 schema:name Applied Physics A
168 schema:publisher Springer Nature
169 rdf:type schema:Periodical
170 sg:person.010570671107.78 schema:affiliation grid-institutes:grid.425806.d
171 schema:familyName Kazaryan
172 schema:givenName M. A.
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010570671107.78
174 rdf:type schema:Person
175 sg:person.011007610046.20 schema:affiliation grid-institutes:grid.418129.7
176 schema:familyName Asratyan
177 schema:givenName A. A.
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011007610046.20
179 rdf:type schema:Person
180 sg:person.011471413375.17 schema:affiliation grid-institutes:grid.425806.d
181 schema:familyName Bulychev
182 schema:givenName N. A.
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011471413375.17
184 rdf:type schema:Person
185 sg:person.012011722541.28 schema:affiliation grid-institutes:None
186 schema:familyName Lyabin
187 schema:givenName N. A.
188 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012011722541.28
189 rdf:type schema:Person
190 sg:person.012300450145.48 schema:affiliation grid-institutes:grid.4886.2
191 schema:familyName Zakharyan
192 schema:givenName R. A.
193 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012300450145.48
194 rdf:type schema:Person
195 sg:person.013027715345.10 schema:affiliation grid-institutes:grid.425806.d
196 schema:familyName Feofanov
197 schema:givenName I. N.
198 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013027715345.10
199 rdf:type schema:Person
200 sg:person.014301251101.65 schema:affiliation grid-institutes:grid.183446.c
201 schema:familyName Krasovskii
202 schema:givenName V. I.
203 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301251101.65
204 rdf:type schema:Person
205 sg:person.015076631501.56 schema:affiliation grid-institutes:grid.77602.34
206 schema:familyName Sachkov
207 schema:givenName V. I.
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015076631501.56
209 rdf:type schema:Person
210 grid-institutes:None schema:alternateName Joint Stock Company “Istok”, Vokzalnaya Str., 2A, Fryazino, 141190, Moscow Region, Russia
211 schema:name Joint Stock Company “Istok”, Vokzalnaya Str., 2A, Fryazino, 141190, Moscow Region, Russia
212 rdf:type schema:Organization
213 grid-institutes:grid.183446.c schema:alternateName National Research Nuclear University “MEPhI”, 31, Kashirskoe highway, 15409, Moscow, Russia
214 schema:name A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova st., 38, 117942, Moscow, Russia
215 National Research Nuclear University “MEPhI”, 31, Kashirskoe highway, 15409, Moscow, Russia
216 rdf:type schema:Organization
217 grid-institutes:grid.418129.7 schema:alternateName Gamalei Institute of Epidemiology and Microbiology, Gamalei Str., 18, 123098, Moscow, Russia
218 schema:name Gamalei Institute of Epidemiology and Microbiology, Gamalei Str., 18, 123098, Moscow, Russia
219 rdf:type schema:Organization
220 grid-institutes:grid.425806.d schema:alternateName P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia
221 schema:name P.N. Lebedev Physical Institute, Russian Academy of Sciences, Leninsky pr., 53, 119991, Moscow, Russia
222 rdf:type schema:Organization
223 grid-institutes:grid.4886.2 schema:alternateName A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova st., 38, 117942, Moscow, Russia
224 schema:name A.M. Prokhorov General Physics Institute, Russian Academy of Sciences, Vavilova st., 38, 117942, Moscow, Russia
225 rdf:type schema:Organization
226 grid-institutes:grid.77602.34 schema:alternateName Siberian Physical-Technical Institute of the Tomsk State University, pl. Novo-Sobornaya, 1, 634050, Tomsk, Russia
227 schema:name Siberian Physical-Technical Institute of the Tomsk State University, pl. Novo-Sobornaya, 1, 634050, Tomsk, Russia
228 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...