FDTD subcell graphene model beyond the thin-film approximation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Ilya Valuev, Sergei Belousov, Maria Bogdanova, Oleg Kotov, Yurii Lozovik

ABSTRACT

A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene. The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results. More... »

PAGES

60

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-016-0635-1

DOI

http://dx.doi.org/10.1007/s00339-016-0635-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033260716


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures", 
          "id": "https://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "HiperCone Ltd., Lugovaya St. 4, Skolkovo IC, 143026, Moscow, Russia", 
            "Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT), Izhorskaya St. 13, Bd.2, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Valuev", 
        "givenName": "Ilya", 
        "id": "sg:person.0611147461.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611147461.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kurchatov Institute", 
          "id": "https://www.grid.ac/institutes/grid.18919.38", 
          "name": [
            "HiperCone Ltd., Lugovaya St. 4, Skolkovo IC, 143026, Moscow, Russia", 
            "Kintech Lab Ltd, 3rd Khoroshevskaya St. 12, 123298, Moscow, Russia", 
            "National Research Center \u2018Kurchatov Institute\u2019, Akademika Kurchatova Sq., 1, 123182, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belousov", 
        "givenName": "Sergei", 
        "id": "sg:person.012005701351.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012005701351.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Kintech Lab Ltd, 3rd Khoroshevskaya St. 12, 123298, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bogdanova", 
        "givenName": "Maria", 
        "id": "sg:person.015036334773.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015036334773.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Spectroscopy", 
          "id": "https://www.grid.ac/institutes/grid.465320.6", 
          "name": [
            "Institute of Spectroscopy of the Russian Academy of Sciences (ISAN), Fizicheskaya Str., 5, 108840, Troitsk, Moscow, Russia", 
            "Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya St., 22, 127055, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kotov", 
        "givenName": "Oleg", 
        "id": "sg:person.016267672732.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267672732.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Spectroscopy", 
          "id": "https://www.grid.ac/institutes/grid.465320.6", 
          "name": [
            "Institute of Spectroscopy of the Russian Academy of Sciences (ISAN), Fizicheskaya Str., 5, 108840, Troitsk, Moscow, Russia", 
            "Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya St., 22, 127055, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lozovik", 
        "givenName": "Yurii", 
        "id": "sg:person.07523610272.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07523610272.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2011.146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007038178", 
          "https://doi.org/10.1038/nnano.2011.146"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.195408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008295076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.86.195408", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008295076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010593797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1158877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010593797"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/129/1/012004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011375319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.085432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034783298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.78.085432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034783298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1202691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045341924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2016/7478621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046988275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1098-2760(19991120)23:4<245::aid-mop17>3.0.co;2-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048656376"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.081410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049556210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.89.081410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049556210"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.81.109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050408744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/49/8/085102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058969745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2040-8978/17/5/055604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059180749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.013832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.93.013832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060514945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lawp.2012.2215834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061343700"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lmwc.2013.2258463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061364133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2003.814733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061494976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tap.2013.2260517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061500876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmag.2011.2172778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061684142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tthz.2013.2263805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061807484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0217979213410014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062938331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.31.002972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065224293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.32.003429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065225613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.33.001491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065226168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.010367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065245038"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01", 
    "datePublishedReg": "2017-01-01", 
    "description": "A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene. The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-016-0635-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "123"
      }
    ], 
    "name": "FDTD subcell graphene model beyond the thin-film approximation", 
    "pagination": "60", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9e72ed93b1cb918a4f5d33590b92297d6de3d25905a745ccf28aa50f93ae6658"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-016-0635-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033260716"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-016-0635-1", 
      "https://app.dimensions.ai/details/publication/pub.1033260716"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113670_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00339-016-0635-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0635-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0635-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0635-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0635-1'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-016-0635-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1dbc6f59da774ca787b350e4d9740f9b
4 schema:citation sg:pub.10.1038/nnano.2011.146
5 https://doi.org/10.1002/(sici)1098-2760(19991120)23:4<245::aid-mop17>3.0.co;2-v
6 https://doi.org/10.1088/0022-3727/49/8/085102
7 https://doi.org/10.1088/1742-6596/129/1/012004
8 https://doi.org/10.1088/2040-8978/17/5/055604
9 https://doi.org/10.1103/physreva.93.013832
10 https://doi.org/10.1103/physrevb.78.085432
11 https://doi.org/10.1103/physrevb.86.195408
12 https://doi.org/10.1103/physrevb.89.081410
13 https://doi.org/10.1103/revmodphys.81.109
14 https://doi.org/10.1109/lawp.2012.2215834
15 https://doi.org/10.1109/lmwc.2013.2258463
16 https://doi.org/10.1109/tap.2003.814733
17 https://doi.org/10.1109/tap.2013.2260517
18 https://doi.org/10.1109/tmag.2011.2172778
19 https://doi.org/10.1109/tthz.2013.2263805
20 https://doi.org/10.1126/science.1158877
21 https://doi.org/10.1126/science.1202691
22 https://doi.org/10.1142/s0217979213410014
23 https://doi.org/10.1155/2016/7478621
24 https://doi.org/10.1364/ol.31.002972
25 https://doi.org/10.1364/ol.32.003429
26 https://doi.org/10.1364/ol.33.001491
27 https://doi.org/10.1364/opex.13.010367
28 schema:datePublished 2017-01
29 schema:datePublishedReg 2017-01-01
30 schema:description A subcell technique for calculation of optical properties of graphene with the finite-difference time-domain (FDTD) method is presented. The technique takes into account the surface conductivity of graphene which allows the correct calculation of its dispersive response for arbitrarily polarized incident waves interacting with the graphene. The developed technique is verified for a planar graphene sheet configuration against the exact analytical solution. Based on the same test case scenario, we also show that the subcell technique demonstrates a superior accuracy and numerical efficiency with respect to the widely used thin-film FDTD approach for modeling graphene. We further apply our technique to the simulations of a graphene metamaterial containing periodically spaced graphene strips (graphene strip-grating) and demonstrate good agreement with the available theoretical results.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree true
34 schema:isPartOf Naaf693d0b43342dd97529a456f813918
35 Nf28301883cdf4fbe92b2ebd47c08e16c
36 sg:journal.1022207
37 schema:name FDTD subcell graphene model beyond the thin-film approximation
38 schema:pagination 60
39 schema:productId N25ec6330290f4a9e89d6009df2be2c62
40 Na4bbb40a523440f6b4bee36de26ad67c
41 Nf3cc5f9f90bd42dda8dc9d83f7395b1b
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033260716
43 https://doi.org/10.1007/s00339-016-0635-1
44 schema:sdDatePublished 2019-04-11T10:36
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N04f5a82b82de4e6bb609db97ff1c6a35
47 schema:url https://link.springer.com/10.1007%2Fs00339-016-0635-1
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N04f5a82b82de4e6bb609db97ff1c6a35 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N1dbc6f59da774ca787b350e4d9740f9b rdf:first sg:person.0611147461.16
54 rdf:rest N8c534ced5aeb4a22b665474f485527dd
55 N25ec6330290f4a9e89d6009df2be2c62 schema:name doi
56 schema:value 10.1007/s00339-016-0635-1
57 rdf:type schema:PropertyValue
58 N4618224ecade4494bca5c708af0ac753 schema:name Kintech Lab Ltd, 3rd Khoroshevskaya St. 12, 123298, Moscow, Russia
59 rdf:type schema:Organization
60 N5c5a25653de84342969f8eea88d464cc rdf:first sg:person.016267672732.49
61 rdf:rest Nba14066913394cc2bf98dec19ef62768
62 N8c534ced5aeb4a22b665474f485527dd rdf:first sg:person.012005701351.73
63 rdf:rest Na0a9ed12f4f642aa9ac0e49dd1e7be8e
64 Na0a9ed12f4f642aa9ac0e49dd1e7be8e rdf:first sg:person.015036334773.06
65 rdf:rest N5c5a25653de84342969f8eea88d464cc
66 Na4bbb40a523440f6b4bee36de26ad67c schema:name dimensions_id
67 schema:value pub.1033260716
68 rdf:type schema:PropertyValue
69 Naaf693d0b43342dd97529a456f813918 schema:volumeNumber 123
70 rdf:type schema:PublicationVolume
71 Nba14066913394cc2bf98dec19ef62768 rdf:first sg:person.07523610272.34
72 rdf:rest rdf:nil
73 Nf28301883cdf4fbe92b2ebd47c08e16c schema:issueNumber 1
74 rdf:type schema:PublicationIssue
75 Nf3cc5f9f90bd42dda8dc9d83f7395b1b schema:name readcube_id
76 schema:value 9e72ed93b1cb918a4f5d33590b92297d6de3d25905a745ccf28aa50f93ae6658
77 rdf:type schema:PropertyValue
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1022207 schema:issn 0947-8396
85 1432-0630
86 schema:name Applied Physics A
87 rdf:type schema:Periodical
88 sg:person.012005701351.73 schema:affiliation https://www.grid.ac/institutes/grid.18919.38
89 schema:familyName Belousov
90 schema:givenName Sergei
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012005701351.73
92 rdf:type schema:Person
93 sg:person.015036334773.06 schema:affiliation N4618224ecade4494bca5c708af0ac753
94 schema:familyName Bogdanova
95 schema:givenName Maria
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015036334773.06
97 rdf:type schema:Person
98 sg:person.016267672732.49 schema:affiliation https://www.grid.ac/institutes/grid.465320.6
99 schema:familyName Kotov
100 schema:givenName Oleg
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267672732.49
102 rdf:type schema:Person
103 sg:person.0611147461.16 schema:affiliation https://www.grid.ac/institutes/grid.435259.c
104 schema:familyName Valuev
105 schema:givenName Ilya
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611147461.16
107 rdf:type schema:Person
108 sg:person.07523610272.34 schema:affiliation https://www.grid.ac/institutes/grid.465320.6
109 schema:familyName Lozovik
110 schema:givenName Yurii
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07523610272.34
112 rdf:type schema:Person
113 sg:pub.10.1038/nnano.2011.146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007038178
114 https://doi.org/10.1038/nnano.2011.146
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/(sici)1098-2760(19991120)23:4<245::aid-mop17>3.0.co;2-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1048656376
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1088/0022-3727/49/8/085102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058969745
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1088/1742-6596/129/1/012004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011375319
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1088/2040-8978/17/5/055604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059180749
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1103/physreva.93.013832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060514945
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1103/physrevb.78.085432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034783298
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1103/physrevb.86.195408 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008295076
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1103/physrevb.89.081410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049556210
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1103/revmodphys.81.109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050408744
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/lawp.2012.2215834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061343700
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/lmwc.2013.2258463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061364133
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tap.2003.814733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061494976
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tap.2013.2260517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061500876
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tmag.2011.2172778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061684142
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tthz.2013.2263805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061807484
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1126/science.1158877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010593797
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1126/science.1202691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045341924
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1142/s0217979213410014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062938331
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1155/2016/7478621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046988275
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1364/ol.31.002972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065224293
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1364/ol.32.003429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065225613
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1364/ol.33.001491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065226168
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1364/opex.13.010367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065245038
161 rdf:type schema:CreativeWork
162 https://www.grid.ac/institutes/grid.18919.38 schema:alternateName Kurchatov Institute
163 schema:name HiperCone Ltd., Lugovaya St. 4, Skolkovo IC, 143026, Moscow, Russia
164 Kintech Lab Ltd, 3rd Khoroshevskaya St. 12, 123298, Moscow, Russia
165 National Research Center ‘Kurchatov Institute’, Akademika Kurchatova Sq., 1, 123182, Moscow, Russia
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.435259.c schema:alternateName Joint Institute for High Temperatures
168 schema:name HiperCone Ltd., Lugovaya St. 4, Skolkovo IC, 143026, Moscow, Russia
169 Joint Institute for High Temperatures of the Russian Academy of Sciences (JIHT), Izhorskaya St. 13, Bd.2, 125412, Moscow, Russia
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.465320.6 schema:alternateName Institute of Spectroscopy
172 schema:name Dukhov Research Institute of Automatics (VNIIA), Sushchevskaya St., 22, 127055, Moscow, Russia
173 Institute of Spectroscopy of the Russian Academy of Sciences (ISAN), Fizicheskaya Str., 5, 108840, Troitsk, Moscow, Russia
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...