Precise control of photoluminescence of silicon-vacancy color centers in homoepitaxial single-crystal diamond: evaluation of efficiency of Si doping from gas ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

Victor Ralchenko, Vadim Sedov, Vladimir Saraykin, Andrey Bolshakov, Evgeny Zavedeev, Evgeny Ashkinazi, Andrew Khomich

ABSTRACT

Ability to precisely control the Si-related color center abundance in diamond is important for the use of silicon-vacancy (SiV) defects with bright photoluminescence (PL) in quantum information technologies and optical biomarkers. Here, we evaluated the efficiency of Si incorporation in (100) plane of homoepitaxial diamond layers upon in situ doping by adding silane SiH4 in the course of diamond chemical vapor deposition in microwave plasma using CH4–H2 mixtures. Both the Si concentration in the doped samples, as determined by secondary ion mass spectrometry, and PL intensity of SiV centers at 738 nm wavelength, measured at excitation wavelength of 473 nm, demonstrate a linear increase with silane content in feed gas in the range. The incorporation efficiency f, defined as the ratio of Si concentration in diamond to that in gas, f = [Si/C]dia/[Si/C]gas is found to be (1.1 ± 0.5) × 10−3 for the silane concentrations explored, [SiH4/CH4] < 0.7 %; thus, the Si atoms are accommodated in (100) diamond face easier than nitrogen and phosphorus, but more difficult than boron. This finding allows a tailoring of the Si content and photoluminescence intensity of SiV centers in in situ doped CVD diamond. More... »

PAGES

795

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-016-0343-x

DOI

http://dx.doi.org/10.1007/s00339-016-0343-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032016830


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Harbin Institute of Technology, 92 Xidazhi Str., 150001, Harbin, People\u2019s Republic of China", 
            "A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia", 
            "National Research Nuclear University MEPhI, Kashirskoye sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ralchenko", 
        "givenName": "Victor", 
        "id": "sg:person.014303322517.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303322517.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia", 
            "National Research Nuclear University MEPhI, Kashirskoye sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedov", 
        "givenName": "Vadim", 
        "id": "sg:person.07620767167.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620767167.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Lukin Scientific Research Institute of Physical Problems, Zapadniy proyezd 5, Zelenograd, 124460, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Saraykin", 
        "givenName": "Vladimir", 
        "id": "sg:person.015304641346.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304641346.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia", 
            "National Research Nuclear University MEPhI, Kashirskoye sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bolshakov", 
        "givenName": "Andrey", 
        "id": "sg:person.010553704203.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553704203.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia", 
            "National Research Nuclear University MEPhI, Kashirskoye sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zavedeev", 
        "givenName": "Evgeny", 
        "id": "sg:person.011655042602.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011655042602.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia", 
            "National Research Nuclear University MEPhI, Kashirskoye sh. 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ashkinazi", 
        "givenName": "Evgeny", 
        "id": "sg:person.011755405137.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755405137.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Radio-Engineering and Electronics", 
          "id": "https://www.grid.ac/institutes/grid.462424.2", 
          "name": [
            "A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia", 
            "Institute of Radio Engineering and Electronics RAS, Vvedenskogo sq. 1, 141190, Fryazino, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khomich", 
        "givenName": "Andrew", 
        "id": "sg:person.012714135570.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012714135570.57"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.200802160", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005043787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1068335611100034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005801170", 
          "https://doi.org/10.3103/s1068335611100034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2015.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005924004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b813515k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006078779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/lpor.201300065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008574251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010740740", 
          "https://doi.org/10.1038/ncomms5739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201400189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013488643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-014-8877-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015442899", 
          "https://doi.org/10.1007/s00339-014-8877-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.201532174", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015449864"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200561920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016507068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200561920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016507068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/25/4/045302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017426518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jnn.2015.9739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017490676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1166/jnn.2015.9735", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024146598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/13/2/025012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030691389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/39/1/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031598809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/39/1/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031598809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/425/19/192022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034710773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2006.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035255215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1003-6326(13)62821-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035261850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0925-9635(95)00471-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036515721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2015.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040607490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3599608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040950754"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/45/6/062001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044623717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.200671403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044775638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-9635(01)00521-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047252990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2011.54", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050669107", 
          "https://doi.org/10.1038/nphoton.2011.54"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-physchem-040513-103659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053728001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl502327b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056220925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057676190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.119812", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057683998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1944228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057833490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1367-2630/16/11/113019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059136353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.245205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.77.245205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060625318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.245208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.84.245208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060637807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.3041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.38.004170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065234559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.7.115201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073832065"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "Ability to precisely control the Si-related color center abundance in diamond is important for the use of silicon-vacancy (SiV) defects with bright photoluminescence (PL) in quantum information technologies and optical biomarkers. Here, we evaluated the efficiency of Si incorporation in (100) plane of homoepitaxial diamond layers upon in situ doping by adding silane SiH4 in the course of diamond chemical vapor deposition in microwave plasma using CH4\u2013H2 mixtures. Both the Si concentration in the doped samples, as determined by secondary ion mass spectrometry, and PL intensity of SiV centers at 738 nm wavelength, measured at excitation wavelength of 473 nm, demonstrate a linear increase with silane content in feed gas in the range. The incorporation efficiency f, defined as the ratio of Si concentration in diamond to that in gas, f = [Si/C]dia/[Si/C]gas is found to be (1.1 \u00b1 0.5) \u00d7 10\u22123 for the silane concentrations explored, [SiH4/CH4] < 0.7 %; thus, the Si atoms are accommodated in (100) diamond face easier than nitrogen and phosphorus, but more difficult than boron. This finding allows a tailoring of the Si content and photoluminescence intensity of SiV centers in in situ doped CVD diamond.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-016-0343-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4896759", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "name": "Precise control of photoluminescence of silicon-vacancy color centers in homoepitaxial single-crystal diamond: evaluation of efficiency of Si doping from gas phase", 
    "pagination": "795", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "988590834c702e34eacae0e9d27d1a74c7484325663bccda86d7e1c8960e5ff9"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-016-0343-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032016830"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-016-0343-x", 
      "https://app.dimensions.ai/details/publication/pub.1032016830"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70046_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00339-016-0343-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0343-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0343-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0343-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0343-x'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-016-0343-x schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nb1cd2b4480a541529ff4e89996bbc705
4 schema:citation sg:pub.10.1007/s00339-014-8877-2
5 sg:pub.10.1038/ncomms5739
6 sg:pub.10.1038/nphoton.2011.54
7 sg:pub.10.3103/s1068335611100034
8 https://doi.org/10.1002/adma.200802160
9 https://doi.org/10.1002/adom.201400189
10 https://doi.org/10.1002/lpor.201300065
11 https://doi.org/10.1002/pssa.200561920
12 https://doi.org/10.1002/pssa.200671403
13 https://doi.org/10.1002/pssa.201532174
14 https://doi.org/10.1016/0925-9635(95)00471-8
15 https://doi.org/10.1016/j.diamond.2006.02.005
16 https://doi.org/10.1016/j.diamond.2015.04.003
17 https://doi.org/10.1016/j.diamond.2015.12.001
18 https://doi.org/10.1016/s0925-9635(01)00521-0
19 https://doi.org/10.1016/s1003-6326(13)62821-6
20 https://doi.org/10.1021/nl502327b
21 https://doi.org/10.1039/b813515k
22 https://doi.org/10.1063/1.114788
23 https://doi.org/10.1063/1.119812
24 https://doi.org/10.1063/1.1944228
25 https://doi.org/10.1063/1.3599608
26 https://doi.org/10.1088/0022-3727/45/6/062001
27 https://doi.org/10.1088/0953-4075/39/1/005
28 https://doi.org/10.1088/0957-4484/25/4/045302
29 https://doi.org/10.1088/1367-2630/13/2/025012
30 https://doi.org/10.1088/1367-2630/16/11/113019
31 https://doi.org/10.1088/1742-6596/425/19/192022
32 https://doi.org/10.1103/physrevb.77.245205
33 https://doi.org/10.1103/physrevb.84.245208
34 https://doi.org/10.1103/physrevlett.77.3041
35 https://doi.org/10.1146/annurev-physchem-040513-103659
36 https://doi.org/10.1166/jnn.2015.9735
37 https://doi.org/10.1166/jnn.2015.9739
38 https://doi.org/10.1364/ol.38.004170
39 https://doi.org/10.7567/apex.7.115201
40 schema:datePublished 2016-09
41 schema:datePublishedReg 2016-09-01
42 schema:description Ability to precisely control the Si-related color center abundance in diamond is important for the use of silicon-vacancy (SiV) defects with bright photoluminescence (PL) in quantum information technologies and optical biomarkers. Here, we evaluated the efficiency of Si incorporation in (100) plane of homoepitaxial diamond layers upon in situ doping by adding silane SiH4 in the course of diamond chemical vapor deposition in microwave plasma using CH4–H2 mixtures. Both the Si concentration in the doped samples, as determined by secondary ion mass spectrometry, and PL intensity of SiV centers at 738 nm wavelength, measured at excitation wavelength of 473 nm, demonstrate a linear increase with silane content in feed gas in the range. The incorporation efficiency f, defined as the ratio of Si concentration in diamond to that in gas, f = [Si/C]dia/[Si/C]gas is found to be (1.1 ± 0.5) × 10−3 for the silane concentrations explored, [SiH4/CH4] < 0.7 %; thus, the Si atoms are accommodated in (100) diamond face easier than nitrogen and phosphorus, but more difficult than boron. This finding allows a tailoring of the Si content and photoluminescence intensity of SiV centers in in situ doped CVD diamond.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree false
46 schema:isPartOf N92843605432f471e80ba754e07248d29
47 Ndb8e80fa383b41c0b9edf40b4a36d29b
48 sg:journal.1022207
49 schema:name Precise control of photoluminescence of silicon-vacancy color centers in homoepitaxial single-crystal diamond: evaluation of efficiency of Si doping from gas phase
50 schema:pagination 795
51 schema:productId N29cfa326486d459596b1e80ea8dc4c4b
52 N850850a6bb14488393f758d813d95bc5
53 Na0e5184d294e49e6adc587b5525b7ad9
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032016830
55 https://doi.org/10.1007/s00339-016-0343-x
56 schema:sdDatePublished 2019-04-11T12:39
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N69a44480fce14e8c9fa40d23b4868477
59 schema:url https://link.springer.com/10.1007%2Fs00339-016-0343-x
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N29cfa326486d459596b1e80ea8dc4c4b schema:name readcube_id
64 schema:value 988590834c702e34eacae0e9d27d1a74c7484325663bccda86d7e1c8960e5ff9
65 rdf:type schema:PropertyValue
66 N48a9d8ab56ee46d9acb45c34987bf924 rdf:first sg:person.07620767167.63
67 rdf:rest Nb5af296304114a2a97593ea72d65e4a8
68 N52aa8e737401445599ce365538b888d3 rdf:first sg:person.011755405137.48
69 rdf:rest N9d00d57b1703460abbff719f175c3478
70 N69a44480fce14e8c9fa40d23b4868477 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N850850a6bb14488393f758d813d95bc5 schema:name dimensions_id
73 schema:value pub.1032016830
74 rdf:type schema:PropertyValue
75 N92843605432f471e80ba754e07248d29 schema:volumeNumber 122
76 rdf:type schema:PublicationVolume
77 N9d00d57b1703460abbff719f175c3478 rdf:first sg:person.012714135570.57
78 rdf:rest rdf:nil
79 Na0e5184d294e49e6adc587b5525b7ad9 schema:name doi
80 schema:value 10.1007/s00339-016-0343-x
81 rdf:type schema:PropertyValue
82 Nb1cd2b4480a541529ff4e89996bbc705 rdf:first sg:person.014303322517.98
83 rdf:rest N48a9d8ab56ee46d9acb45c34987bf924
84 Nb5af296304114a2a97593ea72d65e4a8 rdf:first sg:person.015304641346.21
85 rdf:rest Nf3d5f3aa55d54a02b91b453203584bf0
86 Nb7c847d590324f2581667ac59d6f570c rdf:first sg:person.011655042602.15
87 rdf:rest N52aa8e737401445599ce365538b888d3
88 Ndb8e80fa383b41c0b9edf40b4a36d29b schema:issueNumber 9
89 rdf:type schema:PublicationIssue
90 Nec029ddaf8dc4d2b925c2fb07a7b7f8a schema:name Lukin Scientific Research Institute of Physical Problems, Zapadniy proyezd 5, Zelenograd, 124460, Moscow, Russia
91 rdf:type schema:Organization
92 Nf3d5f3aa55d54a02b91b453203584bf0 rdf:first sg:person.010553704203.21
93 rdf:rest Nb7c847d590324f2581667ac59d6f570c
94 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
98 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
99 rdf:type schema:DefinedTerm
100 sg:grant.4896759 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-016-0343-x
101 rdf:type schema:MonetaryGrant
102 sg:journal.1022207 schema:issn 0947-8396
103 1432-0630
104 schema:name Applied Physics A
105 rdf:type schema:Periodical
106 sg:person.010553704203.21 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
107 schema:familyName Bolshakov
108 schema:givenName Andrey
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010553704203.21
110 rdf:type schema:Person
111 sg:person.011655042602.15 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
112 schema:familyName Zavedeev
113 schema:givenName Evgeny
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011655042602.15
115 rdf:type schema:Person
116 sg:person.011755405137.48 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
117 schema:familyName Ashkinazi
118 schema:givenName Evgeny
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755405137.48
120 rdf:type schema:Person
121 sg:person.012714135570.57 schema:affiliation https://www.grid.ac/institutes/grid.462424.2
122 schema:familyName Khomich
123 schema:givenName Andrew
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012714135570.57
125 rdf:type schema:Person
126 sg:person.014303322517.98 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
127 schema:familyName Ralchenko
128 schema:givenName Victor
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014303322517.98
130 rdf:type schema:Person
131 sg:person.015304641346.21 schema:affiliation Nec029ddaf8dc4d2b925c2fb07a7b7f8a
132 schema:familyName Saraykin
133 schema:givenName Vladimir
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015304641346.21
135 rdf:type schema:Person
136 sg:person.07620767167.63 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
137 schema:familyName Sedov
138 schema:givenName Vadim
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07620767167.63
140 rdf:type schema:Person
141 sg:pub.10.1007/s00339-014-8877-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015442899
142 https://doi.org/10.1007/s00339-014-8877-2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ncomms5739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010740740
145 https://doi.org/10.1038/ncomms5739
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/nphoton.2011.54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050669107
148 https://doi.org/10.1038/nphoton.2011.54
149 rdf:type schema:CreativeWork
150 sg:pub.10.3103/s1068335611100034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005801170
151 https://doi.org/10.3103/s1068335611100034
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1002/adma.200802160 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005043787
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1002/adom.201400189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013488643
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1002/lpor.201300065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008574251
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/pssa.200561920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016507068
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/pssa.200671403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044775638
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/pssa.201532174 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015449864
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/0925-9635(95)00471-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036515721
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1016/j.diamond.2006.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035255215
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1016/j.diamond.2015.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005924004
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.diamond.2015.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040607490
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/s0925-9635(01)00521-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047252990
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/s1003-6326(13)62821-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035261850
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1021/nl502327b schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220925
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1039/b813515k schema:sameAs https://app.dimensions.ai/details/publication/pub.1006078779
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1063/1.114788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057676190
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1063/1.119812 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683998
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1063/1.1944228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057833490
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1063/1.3599608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040950754
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1088/0022-3727/45/6/062001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044623717
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1088/0953-4075/39/1/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031598809
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1088/0957-4484/25/4/045302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017426518
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1088/1367-2630/13/2/025012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030691389
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1088/1367-2630/16/11/113019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059136353
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1088/1742-6596/425/19/192022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034710773
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1103/physrevb.77.245205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060625318
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1103/physrevb.84.245208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060637807
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1103/physrevlett.77.3041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814011
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1146/annurev-physchem-040513-103659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053728001
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1166/jnn.2015.9735 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024146598
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1166/jnn.2015.9739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017490676
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1364/ol.38.004170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065234559
214 rdf:type schema:CreativeWork
215 https://doi.org/10.7567/apex.7.115201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073832065
216 rdf:type schema:CreativeWork
217 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
218 schema:name A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia
219 Harbin Institute of Technology, 92 Xidazhi Str., 150001, Harbin, People’s Republic of China
220 National Research Nuclear University MEPhI, Kashirskoye sh. 31, 115409, Moscow, Russia
221 rdf:type schema:Organization
222 https://www.grid.ac/institutes/grid.462424.2 schema:alternateName Institute of Radio-Engineering and Electronics
223 schema:name A.M. Prokhorov General Physics Institute RAS, Vavilov str. 38, 119991, Moscow, Russia
224 Institute of Radio Engineering and Electronics RAS, Vvedenskogo sq. 1, 141190, Fryazino, Russia
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...