Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

S. Sadeghzadeh

ABSTRACT

In this paper, the penetration-resistance efficiency of single-layer and multilayer graphene sheets has been investigated by means of the multiscale approach. The employed multiscale approach has been implemented by establishing a direct correlation between the finite element method and the molecular dynamics approach and validated by comparing its results with those of the existing experimental works. Since by using numerous techniques, a new class of graphene sheets can be fabricated in which the graphene layers are spaced farther apart (more than the usual distance between layers), this paper has concentrated on the optimal spacing between graphene layers with the goal of improving the impact properties of graphene sheets as important candidates for novel impact-resistant panels. For this purpose, the relative protection (protection with respect to weight) values of graphene sheets were obtained, and it was observed that the relative protection of a single-layer graphene sheet is about 3.64 times that of a 20-layer graphene sheet. This study also showed that a spaced multilayer graphene sheet, with its inter-layer distance being 20 times the usual spacing between ordinary graphene layers, has an impact resistance which is about 20 % higher than that of an ordinary 20-layer graphene sheet. The findings of this paper can be appropriately used in the design and fabrication of future-generation impact-resistant protective panels. More... »

PAGES

655

Journal

TITLE

Applied Physics A

ISSUE

7

VOLUME

122

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-016-0186-5

DOI

http://dx.doi.org/10.1007/s00339-016-0186-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044536102


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Iran University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.411748.f", 
          "name": [
            "Smart Micro/Nano Electro Mechanical Systems Lab (SMNEMS), Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sadeghzadeh", 
        "givenName": "S.", 
        "id": "sg:person.015357504421.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015357504421.04"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.tafmec.2014.06.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003950893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2011.06.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006933241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.polymer.2010.11.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007400802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/08927022.2016.1172704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007663967"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/10/102002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008380372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/42/10/102002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008380372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11051-010-0088-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010906460", 
          "https://doi.org/10.1007/s11051-010-0088-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-008-2755-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013501693", 
          "https://doi.org/10.1007/s10853-008-2755-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/18/13/135301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014020506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0734-743x(02)00004-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016584811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-013-0948-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019157344", 
          "https://doi.org/10.1007/s00466-013-0948-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advengsoft.2014.09.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021393169"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.08.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021622925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.132", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022328266", 
          "https://doi.org/10.1038/nnano.2010.132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2015.09.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023587512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2010.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031313355", 
          "https://doi.org/10.1038/nphoton.2010.186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/23/41/415302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034088097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcph.1995.1039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034822855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4915075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036075260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/17/175602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043293482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0957-4484/21/17/175602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043293482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apm.2016.03.051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044952355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2012.05.059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047658506"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2014.12.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047969271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1258544", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049619583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cma.2007.11.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052816311"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/mnl.2015.0427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056885855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2977867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057889464"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.5566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.39.5566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060549690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1704626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062073881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1615/intjmultcompeng.2013005838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068140143"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "In this paper, the penetration-resistance efficiency of single-layer and multilayer graphene sheets has been investigated by means of the multiscale approach. The employed multiscale approach has been implemented by establishing a direct correlation between the finite element method and the molecular dynamics approach and validated by comparing its results with those of the existing experimental works. Since by using numerous techniques, a new class of graphene sheets can be fabricated in which the graphene layers are spaced farther apart (more than the usual distance between layers), this paper has concentrated on the optimal spacing between graphene layers with the goal of improving the impact properties of graphene sheets as important candidates for novel impact-resistant panels. For this purpose, the relative protection (protection with respect to weight) values of graphene sheets were obtained, and it was observed that the relative protection of a single-layer graphene sheet is about 3.64 times that of a 20-layer graphene sheet. This study also showed that a spaced multilayer graphene sheet, with its inter-layer distance being 20 times the usual spacing between ordinary graphene layers, has an impact resistance which is about 20 % higher than that of an ordinary 20-layer graphene sheet. The findings of this paper can be appropriately used in the design and fabrication of future-generation impact-resistant protective panels.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-016-0186-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "122"
      }
    ], 
    "name": "Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers", 
    "pagination": "655", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d42425755a10c01464c2b29a5f4a558a39b94de20b2d06321d3d827c9a25d147"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-016-0186-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044536102"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-016-0186-5", 
      "https://app.dimensions.ai/details/publication/pub.1044536102"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70064_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00339-016-0186-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0186-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0186-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0186-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-016-0186-5'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      56 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-016-0186-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N476258e317614a68885ce2e2145d7e78
4 schema:citation sg:pub.10.1007/s00466-013-0948-2
5 sg:pub.10.1007/s10853-008-2755-2
6 sg:pub.10.1007/s11051-010-0088-y
7 sg:pub.10.1038/nnano.2010.132
8 sg:pub.10.1038/nphoton.2010.186
9 https://doi.org/10.1006/jcph.1995.1039
10 https://doi.org/10.1016/j.advengsoft.2014.09.016
11 https://doi.org/10.1016/j.apm.2016.03.051
12 https://doi.org/10.1016/j.carbon.2011.06.058
13 https://doi.org/10.1016/j.carbon.2014.12.046
14 https://doi.org/10.1016/j.cma.2007.11.029
15 https://doi.org/10.1016/j.commatsci.2012.05.059
16 https://doi.org/10.1016/j.commatsci.2012.08.028
17 https://doi.org/10.1016/j.compositesb.2015.09.036
18 https://doi.org/10.1016/j.polymer.2010.11.042
19 https://doi.org/10.1016/j.tafmec.2014.06.009
20 https://doi.org/10.1016/s0734-743x(02)00004-0
21 https://doi.org/10.1049/mnl.2015.0427
22 https://doi.org/10.1063/1.2977867
23 https://doi.org/10.1063/1.4915075
24 https://doi.org/10.1080/08927022.2016.1172704
25 https://doi.org/10.1088/0022-3727/42/10/102002
26 https://doi.org/10.1088/0957-4484/18/13/135301
27 https://doi.org/10.1088/0957-4484/21/17/175602
28 https://doi.org/10.1088/0957-4484/23/41/415302
29 https://doi.org/10.1103/physrevb.39.5566
30 https://doi.org/10.1115/1.1704626
31 https://doi.org/10.1126/science.1258544
32 https://doi.org/10.1615/intjmultcompeng.2013005838
33 schema:datePublished 2016-07
34 schema:datePublishedReg 2016-07-01
35 schema:description In this paper, the penetration-resistance efficiency of single-layer and multilayer graphene sheets has been investigated by means of the multiscale approach. The employed multiscale approach has been implemented by establishing a direct correlation between the finite element method and the molecular dynamics approach and validated by comparing its results with those of the existing experimental works. Since by using numerous techniques, a new class of graphene sheets can be fabricated in which the graphene layers are spaced farther apart (more than the usual distance between layers), this paper has concentrated on the optimal spacing between graphene layers with the goal of improving the impact properties of graphene sheets as important candidates for novel impact-resistant panels. For this purpose, the relative protection (protection with respect to weight) values of graphene sheets were obtained, and it was observed that the relative protection of a single-layer graphene sheet is about 3.64 times that of a 20-layer graphene sheet. This study also showed that a spaced multilayer graphene sheet, with its inter-layer distance being 20 times the usual spacing between ordinary graphene layers, has an impact resistance which is about 20 % higher than that of an ordinary 20-layer graphene sheet. The findings of this paper can be appropriately used in the design and fabrication of future-generation impact-resistant protective panels.
36 schema:genre research_article
37 schema:inLanguage en
38 schema:isAccessibleForFree false
39 schema:isPartOf N46fd182240bc4c67a6c9b36cbc48f2c9
40 N552a8bed22e94137952271bf8f17eb59
41 sg:journal.1022207
42 schema:name Benchmarking the penetration-resistance efficiency of multilayer graphene sheets due to spacing the graphene layers
43 schema:pagination 655
44 schema:productId N138e486cffed4deea5060947a1a009e4
45 N1ce82ed5087f46fea417b69ffa782894
46 N80a5ef62ec634294a0b7a6685ce8950e
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044536102
48 https://doi.org/10.1007/s00339-016-0186-5
49 schema:sdDatePublished 2019-04-11T12:43
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher N3e7e745bad414cd48b907c0bd96c1320
52 schema:url https://link.springer.com/10.1007%2Fs00339-016-0186-5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N138e486cffed4deea5060947a1a009e4 schema:name dimensions_id
57 schema:value pub.1044536102
58 rdf:type schema:PropertyValue
59 N1ce82ed5087f46fea417b69ffa782894 schema:name doi
60 schema:value 10.1007/s00339-016-0186-5
61 rdf:type schema:PropertyValue
62 N3e7e745bad414cd48b907c0bd96c1320 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N46fd182240bc4c67a6c9b36cbc48f2c9 schema:volumeNumber 122
65 rdf:type schema:PublicationVolume
66 N476258e317614a68885ce2e2145d7e78 rdf:first sg:person.015357504421.04
67 rdf:rest rdf:nil
68 N552a8bed22e94137952271bf8f17eb59 schema:issueNumber 7
69 rdf:type schema:PublicationIssue
70 N80a5ef62ec634294a0b7a6685ce8950e schema:name readcube_id
71 schema:value d42425755a10c01464c2b29a5f4a558a39b94de20b2d06321d3d827c9a25d147
72 rdf:type schema:PropertyValue
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
77 schema:name Materials Engineering
78 rdf:type schema:DefinedTerm
79 sg:journal.1022207 schema:issn 0947-8396
80 1432-0630
81 schema:name Applied Physics A
82 rdf:type schema:Periodical
83 sg:person.015357504421.04 schema:affiliation https://www.grid.ac/institutes/grid.411748.f
84 schema:familyName Sadeghzadeh
85 schema:givenName S.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015357504421.04
87 rdf:type schema:Person
88 sg:pub.10.1007/s00466-013-0948-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019157344
89 https://doi.org/10.1007/s00466-013-0948-2
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s10853-008-2755-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013501693
92 https://doi.org/10.1007/s10853-008-2755-2
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/s11051-010-0088-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1010906460
95 https://doi.org/10.1007/s11051-010-0088-y
96 rdf:type schema:CreativeWork
97 sg:pub.10.1038/nnano.2010.132 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022328266
98 https://doi.org/10.1038/nnano.2010.132
99 rdf:type schema:CreativeWork
100 sg:pub.10.1038/nphoton.2010.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031313355
101 https://doi.org/10.1038/nphoton.2010.186
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1006/jcph.1995.1039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034822855
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.advengsoft.2014.09.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021393169
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.apm.2016.03.051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044952355
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.carbon.2011.06.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006933241
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.carbon.2014.12.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047969271
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.cma.2007.11.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052816311
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.commatsci.2012.05.059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047658506
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.commatsci.2012.08.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021622925
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.compositesb.2015.09.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023587512
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.polymer.2010.11.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007400802
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.tafmec.2014.06.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003950893
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/s0734-743x(02)00004-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016584811
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1049/mnl.2015.0427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056885855
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1063/1.2977867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057889464
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1063/1.4915075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036075260
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/08927022.2016.1172704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007663967
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1088/0022-3727/42/10/102002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008380372
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1088/0957-4484/18/13/135301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014020506
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/0957-4484/21/17/175602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043293482
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0957-4484/23/41/415302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034088097
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevb.39.5566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060549690
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1115/1.1704626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062073881
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.1258544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049619583
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1615/intjmultcompeng.2013005838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068140143
150 rdf:type schema:CreativeWork
151 https://www.grid.ac/institutes/grid.411748.f schema:alternateName Iran University of Science and Technology
152 schema:name Smart Micro/Nano Electro Mechanical Systems Lab (SMNEMS), Nanotechnology Department, School of New Technologies, Iran University of Science and Technology, Tehran, Iran
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...