Toward laser welding of glasses without optical contacting View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-10

AUTHORS

S. Richter, F. Zimmermann, R. Eberhardt, A. Tünnermann, S. Nolte

ABSTRACT

The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to 10μJ. The laser-induced welding seams exhibit a base area with a size of up to 450μm×160μm. Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about 3μm. Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-015-9377-8

DOI

http://dx.doi.org/10.1007/s00339-015-9377-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008149308


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t, Max-Wien-Platz 1, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Richter", 
        "givenName": "S.", 
        "id": "sg:person.01216444351.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216444351.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Friedrich Schiller University Jena", 
          "id": "https://www.grid.ac/institutes/grid.9613.d", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t, Max-Wien-Platz 1, 07743, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zimmermann", 
        "givenName": "F.", 
        "id": "sg:person.012767746463.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767746463.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Stra\u00dfe 7, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eberhardt", 
        "givenName": "R.", 
        "id": "sg:person.01221164150.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221164150.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t, Max-Wien-Platz 1, 07743, Jena, Germany", 
            "Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Stra\u00dfe 7, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "T\u00fcnnermann", 
        "givenName": "A.", 
        "id": "sg:person.0577721111.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Applied Optics and Precision Engineering", 
          "id": "https://www.grid.ac/institutes/grid.418007.a", 
          "name": [
            "Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universit\u00e4t, Max-Wien-Platz 1, 07743, Jena, Germany", 
            "Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Stra\u00dfe 7, 07745, Jena, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nolte", 
        "givenName": "S.", 
        "id": "sg:person.0767272372.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272372.44"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1364/opex.13.004708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005240597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-002-1819-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007129887", 
          "https://doi.org/10.1007/s00339-002-1819-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-012-7478-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010501732", 
          "https://doi.org/10.1007/s00339-012-7478-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-006-3590-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013917238", 
          "https://doi.org/10.1007/s00339-006-3590-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-006-3590-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013917238", 
          "https://doi.org/10.1007/s00339-006-3590-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.23.005681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019169707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-010-5684-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026279024", 
          "https://doi.org/10.1007/s00339-010-5684-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-010-5684-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026279024", 
          "https://doi.org/10.1007/s00339-010-5684-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2008.47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027337805", 
          "https://doi.org/10.1038/nphoton.2008.47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-011-6369-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027622624", 
          "https://doi.org/10.1007/s00339-011-6369-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2537-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030461795", 
          "https://doi.org/10.1007/s00340-006-2537-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00340-006-2537-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030461795", 
          "https://doi.org/10.1007/s00340-006-2537-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.22.015877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033471296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2078939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040440632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2204847", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057846663"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2221393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057848758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3590716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057980565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1464-4258/3/6/301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059139658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.033901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.112.033901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060762420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.50.001941", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065126719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.51.002098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065127805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ao.52.001149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065128931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.022961", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065198227"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.21.015452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065204212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.21.001729", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065217031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.25.001669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065219475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ome.2.000789", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065241507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2006.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969034"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-10", 
    "datePublishedReg": "2015-10-01", 
    "description": "The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to 10\u03bcJ. The laser-induced welding seams exhibit a base area with a size of up to 450\u03bcm\u00d7160\u03bcm. Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about 3\u03bcm. Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-015-9377-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "121"
      }
    ], 
    "name": "Toward laser welding of glasses without optical contacting", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "26d3400e654d496fc25e706b8329e930e9f67a6bf616abe169cda2659fe8c771"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-015-9377-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008149308"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-015-9377-8", 
      "https://app.dimensions.ai/details/publication/pub.1008149308"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000480.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-015-9377-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9377-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9377-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9377-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9377-8'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-015-9377-8 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author N8adab631a94e4654af7e93bfa432a7c0
4 schema:citation sg:pub.10.1007/s00339-002-1819-4
5 sg:pub.10.1007/s00339-006-3590-4
6 sg:pub.10.1007/s00339-010-5684-2
7 sg:pub.10.1007/s00339-011-6369-1
8 sg:pub.10.1007/s00339-012-7478-1
9 sg:pub.10.1007/s00340-006-2537-y
10 sg:pub.10.1038/nphoton.2008.47
11 https://doi.org/10.1063/1.2204847
12 https://doi.org/10.1063/1.2221393
13 https://doi.org/10.1063/1.3590716
14 https://doi.org/10.1088/1464-4258/3/6/301
15 https://doi.org/10.1103/physrevlett.112.033901
16 https://doi.org/10.1117/12.2078939
17 https://doi.org/10.1364/ao.50.001941
18 https://doi.org/10.1364/ao.51.002098
19 https://doi.org/10.1364/ao.52.001149
20 https://doi.org/10.1364/oe.19.022961
21 https://doi.org/10.1364/oe.21.015452
22 https://doi.org/10.1364/oe.22.015877
23 https://doi.org/10.1364/oe.23.005681
24 https://doi.org/10.1364/ol.21.001729
25 https://doi.org/10.1364/ol.25.001669
26 https://doi.org/10.1364/ome.2.000789
27 https://doi.org/10.1364/opex.13.004708
28 https://doi.org/10.1557/mrs2006.159
29 schema:datePublished 2015-10
30 schema:datePublishedReg 2015-10-01
31 schema:description The welding of transparent materials with ultrashort laser pulse at high repetition rates has attracted much attention due to its potential applications in fields such as optics, microfluidics, optofluidics and precision machinery. One demanding issue is the stable and reliable welding of different materials without the utilization of an intermediate layer or an optical contact. In this work, we maximized the size of the molten volume in order to generate a large pool of molten material which is able to fill an existing gap between the samples. To this end, we used bursts of ultrashort laser pulses with an individual pulse energy of up to 10μJ. The laser-induced welding seams exhibit a base area with a size of up to 450μm×160μm. Using these large modifications, we are able to overcome the requirement of an optical contact and weld even gaps with a height of about 3μm. Bulging of the sample surface and ejection of molten material in the gap between the two samples allow to bridge the gap and enable successful welding. We also determined the breaking strength of laser-welded fused silica samples without an optical contact by a three-point bending test. The determined value of up to 73 MPa is equivalent to 85 % of stability of the pristine bulk material.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf Na5439808083c4f4cbf26995ca75250a4
36 Ne1c07d1b409c41daa4a46f767339bb39
37 sg:journal.1022207
38 schema:name Toward laser welding of glasses without optical contacting
39 schema:pagination 1-9
40 schema:productId N482443297c6d48888ed6bb0cdea8f3b6
41 Ne5f2b54ebef84784a40491be62b017d9
42 Nfa6cb529c5d24438835ec801767a3839
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008149308
44 https://doi.org/10.1007/s00339-015-9377-8
45 schema:sdDatePublished 2019-04-10T16:34
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N93edf8111c1946d5a7454189cdef78f9
48 schema:url http://link.springer.com/10.1007/s00339-015-9377-8
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N33797f1dc8594402be91fcbf46f6e1b9 rdf:first sg:person.0767272372.44
53 rdf:rest rdf:nil
54 N482443297c6d48888ed6bb0cdea8f3b6 schema:name dimensions_id
55 schema:value pub.1008149308
56 rdf:type schema:PropertyValue
57 N4bd2ada772c742deb35ce70ed7683cba rdf:first sg:person.012767746463.31
58 rdf:rest Nd8e6a532fd1344d4bde6e293f83c27a5
59 N8adab631a94e4654af7e93bfa432a7c0 rdf:first sg:person.01216444351.95
60 rdf:rest N4bd2ada772c742deb35ce70ed7683cba
61 N93edf8111c1946d5a7454189cdef78f9 schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Na5439808083c4f4cbf26995ca75250a4 schema:issueNumber 1
64 rdf:type schema:PublicationIssue
65 Nd7d9ba459cb341e1a3409de9d6d56fcf rdf:first sg:person.0577721111.73
66 rdf:rest N33797f1dc8594402be91fcbf46f6e1b9
67 Nd8e6a532fd1344d4bde6e293f83c27a5 rdf:first sg:person.01221164150.95
68 rdf:rest Nd7d9ba459cb341e1a3409de9d6d56fcf
69 Ne1c07d1b409c41daa4a46f767339bb39 schema:volumeNumber 121
70 rdf:type schema:PublicationVolume
71 Ne5f2b54ebef84784a40491be62b017d9 schema:name readcube_id
72 schema:value 26d3400e654d496fc25e706b8329e930e9f67a6bf616abe169cda2659fe8c771
73 rdf:type schema:PropertyValue
74 Nfa6cb529c5d24438835ec801767a3839 schema:name doi
75 schema:value 10.1007/s00339-015-9377-8
76 rdf:type schema:PropertyValue
77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
78 schema:name Engineering
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
81 schema:name Manufacturing Engineering
82 rdf:type schema:DefinedTerm
83 sg:journal.1022207 schema:issn 0947-8396
84 1432-0630
85 schema:name Applied Physics A
86 rdf:type schema:Periodical
87 sg:person.01216444351.95 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
88 schema:familyName Richter
89 schema:givenName S.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01216444351.95
91 rdf:type schema:Person
92 sg:person.01221164150.95 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
93 schema:familyName Eberhardt
94 schema:givenName R.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01221164150.95
96 rdf:type schema:Person
97 sg:person.012767746463.31 schema:affiliation https://www.grid.ac/institutes/grid.9613.d
98 schema:familyName Zimmermann
99 schema:givenName F.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012767746463.31
101 rdf:type schema:Person
102 sg:person.0577721111.73 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
103 schema:familyName Tünnermann
104 schema:givenName A.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577721111.73
106 rdf:type schema:Person
107 sg:person.0767272372.44 schema:affiliation https://www.grid.ac/institutes/grid.418007.a
108 schema:familyName Nolte
109 schema:givenName S.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0767272372.44
111 rdf:type schema:Person
112 sg:pub.10.1007/s00339-002-1819-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007129887
113 https://doi.org/10.1007/s00339-002-1819-4
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00339-006-3590-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013917238
116 https://doi.org/10.1007/s00339-006-3590-4
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s00339-010-5684-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026279024
119 https://doi.org/10.1007/s00339-010-5684-2
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s00339-011-6369-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027622624
122 https://doi.org/10.1007/s00339-011-6369-1
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s00339-012-7478-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010501732
125 https://doi.org/10.1007/s00339-012-7478-1
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s00340-006-2537-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030461795
128 https://doi.org/10.1007/s00340-006-2537-y
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nphoton.2008.47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027337805
131 https://doi.org/10.1038/nphoton.2008.47
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1063/1.2204847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057846663
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1063/1.2221393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057848758
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1063/1.3590716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057980565
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1088/1464-4258/3/6/301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059139658
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.112.033901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060762420
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1117/12.2078939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040440632
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1364/ao.50.001941 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065126719
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1364/ao.51.002098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065127805
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1364/ao.52.001149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065128931
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1364/oe.19.022961 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065198227
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1364/oe.21.015452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065204212
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1364/oe.22.015877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033471296
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1364/oe.23.005681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019169707
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1364/ol.21.001729 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065217031
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1364/ol.25.001669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065219475
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1364/ome.2.000789 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065241507
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1364/opex.13.004708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005240597
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1557/mrs2006.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969034
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.418007.a schema:alternateName Fraunhofer Institute for Applied Optics and Precision Engineering
170 schema:name Fraunhofer Institute for Applied Optics and Precision Engineering, Albert-Einstein-Straße 7, 07745, Jena, Germany
171 Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743, Jena, Germany
172 rdf:type schema:Organization
173 https://www.grid.ac/institutes/grid.9613.d schema:alternateName Friedrich Schiller University Jena
174 schema:name Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität, Max-Wien-Platz 1, 07743, Jena, Germany
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...