Enhancement in performance of optoelectronic devices by optical-functional patterns View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

Yang-Doo Kim, Joong-Yeon Cho, Heon Lee

ABSTRACT

In this study, nanoimprint lithography (NIL) and a direct printing technique were used to create optical-functional structures on the substrate of organic light emitting diodes (OLEDs) and α-Si solar cell devices in order to cause light scattering and enhance their efficiencies. NIL can fabricate nanoscale patterns with a simple process and relatively low costs. Apart from low cost, the NIL-based direct patterning process also has advantages such as high throughput and high resolution. In addition, it enables the fabrication of inorganic or organic–inorganic hybrid nano-patterns on various substrates and can therefore be applied to diverse electronic devices to enhance their performance. The performances of the optoelectronic devices were improved after the formation of the optical-functional structure. In case of a thin-film solar cell on patterned glass, its conversion efficiency was increased up to 39.1 %, while the conversion efficiency of a thin-film solar cell on a patterned metal layer was increased up to 12 %. In case of OLEDs, the current and power efficiencies of OLEDs on planarized patterns were enhanced by 32 and 49 %, respectively. More... »

PAGES

377-386

References to SciGraph publications

Journal

TITLE

Applied Physics A

ISSUE

2

VOLUME

121

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-015-9193-1

DOI

http://dx.doi.org/10.1007/s00339-015-9193-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002842464


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Sungbuk-gu, 136-713, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yang-Doo", 
        "id": "sg:person.01100452534.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100452534.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Sungbuk-gu, 136-713, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cho", 
        "givenName": "Joong-Yeon", 
        "id": "sg:person.011323147535.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323147535.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea University", 
          "id": "https://www.grid.ac/institutes/grid.222754.4", 
          "name": [
            "Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Sungbuk-gu, 136-713, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Heon", 
        "id": "sg:person.01030770305.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030770305.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/adma.201004301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003481939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201200120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009615619"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.orgel.2004.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022721911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2008.03.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024681722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3527936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032502747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(03)00006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035244955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0040-6090(03)00006-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035244955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0269098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035340308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la0269098", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035340308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am100361h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038256973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.19940060612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039150975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c1jm12300a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039292034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2494/photopolymer.22.193", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041463878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/opex.13.005669", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043766518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adom.201300189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047986942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0927-0248(99)00140-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050789303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051269288", 
          "https://doi.org/10.1038/nature00792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature00792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051269288", 
          "https://doi.org/10.1038/nature00792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn201464t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056223497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.110575", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057658139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124588", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1435422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057706565"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1766071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057817935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.373779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058008152"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.3730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.58.3730", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060589812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.3294", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060815144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.589752", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062199798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/apex.3.051102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063031076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.18.00a335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065193449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.19.00a865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065196670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.38.001573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065233729"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "In this study, nanoimprint lithography (NIL) and a direct printing technique were used to create optical-functional structures on the substrate of organic light emitting diodes (OLEDs) and \u03b1-Si solar cell devices in order to cause light scattering and enhance their efficiencies. NIL can fabricate nanoscale patterns with a simple process and relatively low costs. Apart from low cost, the NIL-based direct patterning process also has advantages such as high throughput and high resolution. In addition, it enables the fabrication of inorganic or organic\u2013inorganic hybrid nano-patterns on various substrates and can therefore be applied to diverse electronic devices to enhance their performance. The performances of the optoelectronic devices were improved after the formation of the optical-functional structure. In case of a thin-film solar cell on patterned glass, its conversion efficiency was increased up to 39.1 %, while the conversion efficiency of a thin-film solar cell on a patterned metal layer was increased up to 12 %. In case of OLEDs, the current and power efficiencies of OLEDs on planarized patterns were enhanced by 32 and 49 %, respectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-015-9193-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "121"
      }
    ], 
    "name": "Enhancement in performance of optoelectronic devices by optical-functional patterns", 
    "pagination": "377-386", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0d89486b71c3208f28c5035c2d14b49d2a5fec344652a413e071c88fdca9aa15"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-015-9193-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002842464"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-015-9193-1", 
      "https://app.dimensions.ai/details/publication/pub.1002842464"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000485.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-015-9193-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9193-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9193-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9193-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9193-1'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      55 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-015-9193-1 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nbcf20c75b61b49b3b56c42a12ce9f1da
4 schema:citation sg:pub.10.1038/nature00792
5 https://doi.org/10.1002/adma.19940060612
6 https://doi.org/10.1002/adma.201004301
7 https://doi.org/10.1002/adma.201200120
8 https://doi.org/10.1002/adom.201300189
9 https://doi.org/10.1016/j.apsusc.2008.03.046
10 https://doi.org/10.1016/j.orgel.2004.12.001
11 https://doi.org/10.1016/s0040-6090(03)00006-3
12 https://doi.org/10.1016/s0927-0248(99)00140-3
13 https://doi.org/10.1021/am100361h
14 https://doi.org/10.1021/la0269098
15 https://doi.org/10.1021/nn201464t
16 https://doi.org/10.1039/c1jm12300a
17 https://doi.org/10.1063/1.110575
18 https://doi.org/10.1063/1.124588
19 https://doi.org/10.1063/1.1435422
20 https://doi.org/10.1063/1.1766071
21 https://doi.org/10.1063/1.3527936
22 https://doi.org/10.1063/1.373779
23 https://doi.org/10.1103/physrevb.58.3730
24 https://doi.org/10.1103/physrevlett.78.3294
25 https://doi.org/10.1116/1.589752
26 https://doi.org/10.1143/apex.3.051102
27 https://doi.org/10.1364/oe.18.00a335
28 https://doi.org/10.1364/oe.19.00a865
29 https://doi.org/10.1364/ol.38.001573
30 https://doi.org/10.1364/opex.13.005669
31 https://doi.org/10.2494/photopolymer.22.193
32 schema:datePublished 2015-11
33 schema:datePublishedReg 2015-11-01
34 schema:description In this study, nanoimprint lithography (NIL) and a direct printing technique were used to create optical-functional structures on the substrate of organic light emitting diodes (OLEDs) and α-Si solar cell devices in order to cause light scattering and enhance their efficiencies. NIL can fabricate nanoscale patterns with a simple process and relatively low costs. Apart from low cost, the NIL-based direct patterning process also has advantages such as high throughput and high resolution. In addition, it enables the fabrication of inorganic or organic–inorganic hybrid nano-patterns on various substrates and can therefore be applied to diverse electronic devices to enhance their performance. The performances of the optoelectronic devices were improved after the formation of the optical-functional structure. In case of a thin-film solar cell on patterned glass, its conversion efficiency was increased up to 39.1 %, while the conversion efficiency of a thin-film solar cell on a patterned metal layer was increased up to 12 %. In case of OLEDs, the current and power efficiencies of OLEDs on planarized patterns were enhanced by 32 and 49 %, respectively.
35 schema:genre research_article
36 schema:inLanguage en
37 schema:isAccessibleForFree false
38 schema:isPartOf N57edd81186414465a6d0706386019f90
39 Ncbd8d49a49224a0c84422f893dbaecf3
40 sg:journal.1022207
41 schema:name Enhancement in performance of optoelectronic devices by optical-functional patterns
42 schema:pagination 377-386
43 schema:productId N04d75b336f6242eaac31f87ea02437f8
44 N4016a9d7ed914745abfbee8278829c3e
45 N4c40cb2ee76e4abcb1f502e7f10f1b21
46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002842464
47 https://doi.org/10.1007/s00339-015-9193-1
48 schema:sdDatePublished 2019-04-10T21:31
49 schema:sdLicense https://scigraph.springernature.com/explorer/license/
50 schema:sdPublisher Nc7ed70d6d60f4b31982b574d664b21f4
51 schema:url http://link.springer.com/10.1007/s00339-015-9193-1
52 sgo:license sg:explorer/license/
53 sgo:sdDataset articles
54 rdf:type schema:ScholarlyArticle
55 N04d75b336f6242eaac31f87ea02437f8 schema:name readcube_id
56 schema:value 0d89486b71c3208f28c5035c2d14b49d2a5fec344652a413e071c88fdca9aa15
57 rdf:type schema:PropertyValue
58 N347eb2de690147a48c498a8fcce0d5da rdf:first sg:person.011323147535.62
59 rdf:rest N700bc725ba814ee69dd9e6ee15e914d2
60 N4016a9d7ed914745abfbee8278829c3e schema:name doi
61 schema:value 10.1007/s00339-015-9193-1
62 rdf:type schema:PropertyValue
63 N4c40cb2ee76e4abcb1f502e7f10f1b21 schema:name dimensions_id
64 schema:value pub.1002842464
65 rdf:type schema:PropertyValue
66 N57edd81186414465a6d0706386019f90 schema:issueNumber 2
67 rdf:type schema:PublicationIssue
68 N700bc725ba814ee69dd9e6ee15e914d2 rdf:first sg:person.01030770305.50
69 rdf:rest rdf:nil
70 Nbcf20c75b61b49b3b56c42a12ce9f1da rdf:first sg:person.01100452534.05
71 rdf:rest N347eb2de690147a48c498a8fcce0d5da
72 Nc7ed70d6d60f4b31982b574d664b21f4 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Ncbd8d49a49224a0c84422f893dbaecf3 schema:volumeNumber 121
75 rdf:type schema:PublicationVolume
76 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
77 schema:name Engineering
78 rdf:type schema:DefinedTerm
79 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
80 schema:name Materials Engineering
81 rdf:type schema:DefinedTerm
82 sg:journal.1022207 schema:issn 0947-8396
83 1432-0630
84 schema:name Applied Physics A
85 rdf:type schema:Periodical
86 sg:person.01030770305.50 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
87 schema:familyName Lee
88 schema:givenName Heon
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030770305.50
90 rdf:type schema:Person
91 sg:person.01100452534.05 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
92 schema:familyName Kim
93 schema:givenName Yang-Doo
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01100452534.05
95 rdf:type schema:Person
96 sg:person.011323147535.62 schema:affiliation https://www.grid.ac/institutes/grid.222754.4
97 schema:familyName Cho
98 schema:givenName Joong-Yeon
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011323147535.62
100 rdf:type schema:Person
101 sg:pub.10.1038/nature00792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051269288
102 https://doi.org/10.1038/nature00792
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1002/adma.19940060612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039150975
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1002/adma.201004301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003481939
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1002/adma.201200120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009615619
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1002/adom.201300189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047986942
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.apsusc.2008.03.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024681722
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.orgel.2004.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022721911
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0040-6090(03)00006-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035244955
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0927-0248(99)00140-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050789303
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1021/am100361h schema:sameAs https://app.dimensions.ai/details/publication/pub.1038256973
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1021/la0269098 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035340308
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1021/nn201464t schema:sameAs https://app.dimensions.ai/details/publication/pub.1056223497
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1039/c1jm12300a schema:sameAs https://app.dimensions.ai/details/publication/pub.1039292034
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1063/1.110575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057658139
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1063/1.124588 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688722
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1063/1.1435422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057706565
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1063/1.1766071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057817935
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1063/1.3527936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032502747
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1063/1.373779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058008152
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1103/physrevb.58.3730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060589812
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1103/physrevlett.78.3294 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060815144
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1116/1.589752 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062199798
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1143/apex.3.051102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063031076
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1364/oe.18.00a335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065193449
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1364/oe.19.00a865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065196670
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1364/ol.38.001573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065233729
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1364/opex.13.005669 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043766518
155 rdf:type schema:CreativeWork
156 https://doi.org/10.2494/photopolymer.22.193 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041463878
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.222754.4 schema:alternateName Korea University
159 schema:name Department of Materials Science and Engineering, Korea University, 5-1 Anam-dong, Sungbuk-gu, 136-713, Seoul, South Korea
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...