Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-04-22

AUTHORS

Pan Gong, Shaofan Zhao, Xin Wang, Kefu Yao

ABSTRACT

The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger–Akahira–Sunose and Ozawa–Flynn–Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as “strong glass former.” The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran–Colmenero’s method. More... »

PAGES

145-153

References to SciGraph publications

  • 2013-08-30. Kinetics of non-isothermal crystallization in Cu50Zr43Al7 and (Cu50Zr43Al7)95Be5 metallic glasses in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2010-02-10. Bulk metallic glasses: Overcoming the challenges to widespread applications in JOM
  • 1981-09. The three activation energies with isothermal transformations: applications to metallic glasses in JOURNAL OF MATERIALS SCIENCE
  • 2013-01-05. Critical cooling rate for the glass formation of ferromagnetic Fe80P13C7 alloy in ACTA METALLURGICA SINICA (ENGLISH LETTERS)
  • 2013-09-10. Ti-Zr-Be-Fe quaternary bulk metallic glasses designed by Fe alloying in SCIENCE CHINA PHYSICS, MECHANICS & ASTRONOMY
  • 2011-05-01. Kinetics of crystallization of Zr52Cu18Ni14Al10Ti6 metallic glass in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 1970-09. Kinetic analysis of derivative curves in thermal analysis in JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY
  • 2000-06. Nucleation and growth of a multicomponent metallic glass in BULLETIN OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00339-015-9182-4

    DOI

    http://dx.doi.org/10.1007/s00339-015-9182-4

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1021869258


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gong", 
            "givenName": "Pan", 
            "id": "sg:person.014726145053.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726145053.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Shaofan", 
            "id": "sg:person.014737746615.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737746615.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China", 
              "id": "http://www.grid.ac/institutes/grid.412030.4", 
              "name": [
                "School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xin", 
            "id": "sg:person.016215435721.91", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016215435721.91"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China", 
              "id": "http://www.grid.ac/institutes/grid.12527.33", 
              "name": [
                "School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yao", 
            "givenName": "Kefu", 
            "id": "sg:person.010571403552.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010571403552.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10973-013-3364-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018847165", 
              "https://doi.org/10.1007/s10973-013-3364-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01911411", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020362867", 
              "https://doi.org/10.1007/bf01911411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11433-013-5271-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018174296", 
              "https://doi.org/10.1007/s11433-013-5271-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01113575", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004126009", 
              "https://doi.org/10.1007/bf01113575"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02719907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015324346", 
              "https://doi.org/10.1007/bf02719907"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-010-0035-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011592579", 
              "https://doi.org/10.1007/s11837-010-0035-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40195-012-0117-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028888541", 
              "https://doi.org/10.1007/s40195-012-0117-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10973-011-1549-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030455411", 
              "https://doi.org/10.1007/s10973-011-1549-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2015-04-22", 
        "datePublishedReg": "2015-04-22", 
        "description": "The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger\u2013Akahira\u2013Sunose and Ozawa\u2013Flynn\u2013Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as \u201cstrong glass former.\u201d The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran\u2013Colmenero\u2019s method.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00339-015-9182-4", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7001440", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.7176047", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1022207", 
            "issn": [
              "0947-8396", 
              "1432-0630"
            ], 
            "name": "Applied Physics A", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "120"
          }
        ], 
        "keywords": [
          "glass-forming ability", 
          "glassy alloys", 
          "high glass-forming ability", 
          "bulk metallic glass", 
          "differential scanning calorimetry", 
          "critical cooling rate", 
          "activation energy", 
          "non-isothermal crystallization kinetics", 
          "scanning calorimetry", 
          "first exothermic peak", 
          "metallic glasses", 
          "alloy", 
          "wall model", 
          "cooling rate", 
          "centimeter order", 
          "crystallization kinetics", 
          "Ozawa\u2013Flynn", 
          "Kissinger\u2013Akahira", 
          "exothermic peak", 
          "characteristic temperature", 
          "local Avrami exponent", 
          "crystallization process", 
          "critical size", 
          "local activation energy", 
          "nucleation rate", 
          "glass", 
          "Avrami exponent", 
          "strong glass", 
          "energy", 
          "calorimetry", 
          "Sunose", 
          "Gibbs energy difference", 
          "kinetics", 
          "nucleation", 
          "Ozawa equation", 
          "temperature", 
          "first step crystallization", 
          "crystalline state", 
          "fragility index", 
          "method", 
          "Kissinger", 
          "equations", 
          "crystallization", 
          "process", 
          "rate", 
          "size", 
          "order", 
          "exponent", 
          "energy difference", 
          "peak", 
          "model", 
          "ability", 
          "growth", 
          "state", 
          "index", 
          "beginning", 
          "differences"
        ], 
        "name": "Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry", 
        "pagination": "145-153", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1021869258"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00339-015-9182-4"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00339-015-9182-4", 
          "https://app.dimensions.ai/details/publication/pub.1021869258"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T15:59", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_663.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00339-015-9182-4"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9182-4'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9182-4'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9182-4'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-015-9182-4'


     

    This table displays all metadata directly associated to this object as RDF triples.

    174 TRIPLES      21 PREDICATES      89 URIs      73 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00339-015-9182-4 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nfd7b08da900f4cf8a1b2474cc930f022
    4 schema:citation sg:pub.10.1007/bf01113575
    5 sg:pub.10.1007/bf01911411
    6 sg:pub.10.1007/bf02719907
    7 sg:pub.10.1007/s10973-011-1549-y
    8 sg:pub.10.1007/s10973-013-3364-0
    9 sg:pub.10.1007/s11433-013-5271-6
    10 sg:pub.10.1007/s11837-010-0035-5
    11 sg:pub.10.1007/s40195-012-0117-1
    12 schema:datePublished 2015-04-22
    13 schema:datePublishedReg 2015-04-22
    14 schema:description The non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 glassy alloy were investigated by differential scanning calorimetry. The activation energies corresponding to the characteristic temperatures have been calculated by Kissinger and Ozawa equations. Based on Kissinger–Akahira–Sunose and Ozawa–Flynn–Wall models, it has been found that the local activation energy is higher at the beginning of the crystallization process for the first exothermic peak. The local Avrami exponent indicates that the first-step crystallization is mainly a high-dimensional nucleation and growth with an increasing nucleation rate. According to the calculated fragility index, Ti41Zr25Be28Fe6 alloy can be classified as “strong glass former.” The studied alloy also possesses a critical size up to centimeter order, and the high glass-forming ability is probably related to the relatively low Gibbs energy difference between the liquid and crystalline states. The critical cooling rate of Ti41Zr25Be28Fe6 glassy alloy has also been determined using Barandiaran–Colmenero’s method.
    15 schema:genre article
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N1be2aaed8b824ca9b263c0261f24e883
    18 N62aad97c105d40a380502a87bd1e50f0
    19 sg:journal.1022207
    20 schema:keywords Avrami exponent
    21 Gibbs energy difference
    22 Kissinger
    23 Kissinger–Akahira
    24 Ozawa equation
    25 Ozawa–Flynn
    26 Sunose
    27 ability
    28 activation energy
    29 alloy
    30 beginning
    31 bulk metallic glass
    32 calorimetry
    33 centimeter order
    34 characteristic temperature
    35 cooling rate
    36 critical cooling rate
    37 critical size
    38 crystalline state
    39 crystallization
    40 crystallization kinetics
    41 crystallization process
    42 differences
    43 differential scanning calorimetry
    44 energy
    45 energy difference
    46 equations
    47 exothermic peak
    48 exponent
    49 first exothermic peak
    50 first step crystallization
    51 fragility index
    52 glass
    53 glass-forming ability
    54 glassy alloys
    55 growth
    56 high glass-forming ability
    57 index
    58 kinetics
    59 local Avrami exponent
    60 local activation energy
    61 metallic glasses
    62 method
    63 model
    64 non-isothermal crystallization kinetics
    65 nucleation
    66 nucleation rate
    67 order
    68 peak
    69 process
    70 rate
    71 scanning calorimetry
    72 size
    73 state
    74 strong glass
    75 temperature
    76 wall model
    77 schema:name Non-isothermal crystallization kinetics and glass-forming ability of Ti41Zr25Be28Fe6 bulk metallic glass investigated by differential scanning calorimetry
    78 schema:pagination 145-153
    79 schema:productId N5290883c046a4a23b7c5de36b2bdd2c2
    80 Nb40c9d80f93d4cdba06f3685ea90fc74
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021869258
    82 https://doi.org/10.1007/s00339-015-9182-4
    83 schema:sdDatePublished 2022-09-02T15:59
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Na777dbf2c46c439a951f93127290cab4
    86 schema:url https://doi.org/10.1007/s00339-015-9182-4
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N1be2aaed8b824ca9b263c0261f24e883 schema:issueNumber 1
    91 rdf:type schema:PublicationIssue
    92 N5290883c046a4a23b7c5de36b2bdd2c2 schema:name doi
    93 schema:value 10.1007/s00339-015-9182-4
    94 rdf:type schema:PropertyValue
    95 N62aad97c105d40a380502a87bd1e50f0 schema:volumeNumber 120
    96 rdf:type schema:PublicationVolume
    97 N76a08682b307450ba46995bc24a0c777 rdf:first sg:person.014737746615.12
    98 rdf:rest N8527a958edc445b68a94996bf969966d
    99 N8527a958edc445b68a94996bf969966d rdf:first sg:person.016215435721.91
    100 rdf:rest N9b2397283d324cfca121af29a44ed773
    101 N9b2397283d324cfca121af29a44ed773 rdf:first sg:person.010571403552.32
    102 rdf:rest rdf:nil
    103 Na777dbf2c46c439a951f93127290cab4 schema:name Springer Nature - SN SciGraph project
    104 rdf:type schema:Organization
    105 Nb40c9d80f93d4cdba06f3685ea90fc74 schema:name dimensions_id
    106 schema:value pub.1021869258
    107 rdf:type schema:PropertyValue
    108 Nfd7b08da900f4cf8a1b2474cc930f022 rdf:first sg:person.014726145053.03
    109 rdf:rest N76a08682b307450ba46995bc24a0c777
    110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Engineering
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Materials Engineering
    115 rdf:type schema:DefinedTerm
    116 sg:grant.7001440 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-015-9182-4
    117 rdf:type schema:MonetaryGrant
    118 sg:grant.7176047 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-015-9182-4
    119 rdf:type schema:MonetaryGrant
    120 sg:journal.1022207 schema:issn 0947-8396
    121 1432-0630
    122 schema:name Applied Physics A
    123 schema:publisher Springer Nature
    124 rdf:type schema:Periodical
    125 sg:person.010571403552.32 schema:affiliation grid-institutes:grid.12527.33
    126 schema:familyName Yao
    127 schema:givenName Kefu
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010571403552.32
    129 rdf:type schema:Person
    130 sg:person.014726145053.03 schema:affiliation grid-institutes:grid.12527.33
    131 schema:familyName Gong
    132 schema:givenName Pan
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014726145053.03
    134 rdf:type schema:Person
    135 sg:person.014737746615.12 schema:affiliation grid-institutes:grid.12527.33
    136 schema:familyName Zhao
    137 schema:givenName Shaofan
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014737746615.12
    139 rdf:type schema:Person
    140 sg:person.016215435721.91 schema:affiliation grid-institutes:grid.412030.4
    141 schema:familyName Wang
    142 schema:givenName Xin
    143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016215435721.91
    144 rdf:type schema:Person
    145 sg:pub.10.1007/bf01113575 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004126009
    146 https://doi.org/10.1007/bf01113575
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/bf01911411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020362867
    149 https://doi.org/10.1007/bf01911411
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/bf02719907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015324346
    152 https://doi.org/10.1007/bf02719907
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10973-011-1549-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030455411
    155 https://doi.org/10.1007/s10973-011-1549-y
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s10973-013-3364-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018847165
    158 https://doi.org/10.1007/s10973-013-3364-0
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11433-013-5271-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018174296
    161 https://doi.org/10.1007/s11433-013-5271-6
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s11837-010-0035-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011592579
    164 https://doi.org/10.1007/s11837-010-0035-5
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s40195-012-0117-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028888541
    167 https://doi.org/10.1007/s40195-012-0117-1
    168 rdf:type schema:CreativeWork
    169 grid-institutes:grid.12527.33 schema:alternateName School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
    170 schema:name School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
    171 rdf:type schema:Organization
    172 grid-institutes:grid.412030.4 schema:alternateName School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
    173 schema:name School of Materials Science and Engineering, Hebei University of Technology, 300130, Tianjin, China
    174 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...