Ontology type: schema:ScholarlyArticle
2014-04-23
AUTHORSLeander Schulz, Eui-Jung Yun, Ananth Dodabalapur
ABSTRACTAccurate determination of the charge transport characteristics of amorphous metal-oxide transistors requires the mitigation of the effects of contact resistance. The use of additional electrodes as voltage probes can overcome contact resistance-related limitations and yields accurate charge carrier mobility values, trap depths and temperature and carrier density dependencies of mobility as well as trap depths. We show that large differences in measured charge carrier mobility values are obtained when such contact resistances are not factored out. Upon exclusion of the contact resistance, the true temperature dependence of charge carrier mobility appears in the form of two clearly distinct mobility regimes. Analyzing these revealed mobility regions leads to a more accurate determination of the underlying transport physics, which shows that contact resistance-related artefacts yield incorrect trends of trap depth with gate voltage, potentially leading to a misconstruction of the charge transport picture. Furthermore, a comparison of low- and high-mobility samples indicates that the observed effects are more general. More... »
PAGES1103-1107
http://scigraph.springernature.com/pub.10.1007/s00339-014-8422-3
DOIhttp://dx.doi.org/10.1007/s00339-014-8422-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1049565438
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "School of Physical Science and Technology, Sichuan University, 610064, Chengdu, Sichuan, China",
"id": "http://www.grid.ac/institutes/grid.13291.38",
"name": [
"Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA",
"School of Physical Science and Technology, Sichuan University, 610064, Chengdu, Sichuan, China"
],
"type": "Organization"
},
"familyName": "Schulz",
"givenName": "Leander",
"id": "sg:person.01243655221.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243655221.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "College of IT Engineering and Department of System Control Engineering, Hoseo University, 336-795, Asan, Choongnam, South Korea",
"id": "http://www.grid.ac/institutes/grid.412238.e",
"name": [
"Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA",
"College of IT Engineering and Department of System Control Engineering, Hoseo University, 336-795, Asan, Choongnam, South Korea"
],
"type": "Organization"
},
"familyName": "Yun",
"givenName": "Eui-Jung",
"id": "sg:person.013341701663.32",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013341701663.32"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA",
"id": "http://www.grid.ac/institutes/grid.89336.37",
"name": [
"Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA"
],
"type": "Organization"
},
"familyName": "Dodabalapur",
"givenName": "Ananth",
"id": "sg:person.0632764457.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632764457.49"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1038/nmat2560",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017244326",
"https://doi.org/10.1038/nmat2560"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1557/jmr.2012.134",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001439981",
"https://doi.org/10.1557/jmr.2012.134"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nature11434",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1029347259",
"https://doi.org/10.1038/nature11434"
],
"type": "CreativeWork"
}
],
"datePublished": "2014-04-23",
"datePublishedReg": "2014-04-23",
"description": "Accurate determination of the charge transport characteristics of amorphous metal-oxide transistors requires the mitigation of the effects of contact resistance. The use of additional electrodes as voltage probes can overcome contact resistance-related limitations and yields accurate charge carrier mobility values, trap depths and temperature and carrier density dependencies of mobility as well as trap depths. We show that large differences in measured charge carrier mobility values are obtained when such contact resistances are not factored out. Upon exclusion of the contact resistance, the true temperature dependence of charge carrier mobility appears in the form of two clearly distinct mobility regimes. Analyzing these revealed mobility regions leads to a more accurate determination of the underlying transport physics, which shows that contact resistance-related artefacts yield incorrect trends of trap depth with gate voltage, potentially leading to a misconstruction of the charge transport picture. Furthermore, a comparison of low- and high-mobility samples indicates that the observed effects are more general.",
"genre": "article",
"id": "sg:pub.10.1007/s00339-014-8422-3",
"inLanguage": "en",
"isAccessibleForFree": false,
"isFundedItemOf": [
{
"id": "sg:grant.5228382",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.5214127",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1022207",
"issn": [
"0947-8396",
"1432-0630"
],
"name": "Applied Physics A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "115"
}
],
"keywords": [
"contact resistance",
"carrier mobility values",
"charge carrier mobility values",
"charge carrier mobility",
"amorphous zinc tin oxide thin-film transistors",
"zinc tin oxide thin-film transistors",
"tin oxide thin film transistors",
"carrier mobility",
"oxide thin-film transistors",
"metal oxide transistors",
"thin-film transistors",
"mobility values",
"charge transport characteristics",
"trap depth",
"true temperature dependence",
"voltage probe",
"transport physics",
"transport parameters",
"gate voltage",
"transport characteristics",
"incorrect trends",
"transistors",
"additional electrodes",
"transport picture",
"accurate determination",
"high mobility samples",
"density dependencies",
"temperature dependence",
"voltage",
"depth",
"mobility region",
"resistance",
"electrode",
"temperature",
"mobility",
"mitigation",
"parameters",
"large differences",
"effect",
"values",
"characteristics",
"determination",
"regime",
"dependence",
"physics",
"dependency",
"observed effects",
"comparison",
"limitations",
"probe",
"mobility regimes",
"use",
"artifacts",
"samples",
"region",
"evaluation",
"trends",
"form",
"differences",
"picture",
"exclusion",
"misconstruction"
],
"name": "Effects of contact resistance on the evaluation of charge carrier mobilities and transport parameters in amorphous zinc tin oxide thin-film transistors",
"pagination": "1103-1107",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1049565438"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00339-014-8422-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00339-014-8422-3",
"https://app.dimensions.ai/details/publication/pub.1049565438"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:12",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_639.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00339-014-8422-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-014-8422-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-014-8422-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-014-8422-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-014-8422-3'
This table displays all metadata directly associated to this object as RDF triples.
158 TRIPLES
22 PREDICATES
90 URIs
79 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00339-014-8422-3 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N17d9926dfb0e4a02bf00319794a23f07 |
4 | ″ | schema:citation | sg:pub.10.1038/nature11434 |
5 | ″ | ″ | sg:pub.10.1038/nmat2560 |
6 | ″ | ″ | sg:pub.10.1557/jmr.2012.134 |
7 | ″ | schema:datePublished | 2014-04-23 |
8 | ″ | schema:datePublishedReg | 2014-04-23 |
9 | ″ | schema:description | Accurate determination of the charge transport characteristics of amorphous metal-oxide transistors requires the mitigation of the effects of contact resistance. The use of additional electrodes as voltage probes can overcome contact resistance-related limitations and yields accurate charge carrier mobility values, trap depths and temperature and carrier density dependencies of mobility as well as trap depths. We show that large differences in measured charge carrier mobility values are obtained when such contact resistances are not factored out. Upon exclusion of the contact resistance, the true temperature dependence of charge carrier mobility appears in the form of two clearly distinct mobility regimes. Analyzing these revealed mobility regions leads to a more accurate determination of the underlying transport physics, which shows that contact resistance-related artefacts yield incorrect trends of trap depth with gate voltage, potentially leading to a misconstruction of the charge transport picture. Furthermore, a comparison of low- and high-mobility samples indicates that the observed effects are more general. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N58f6fba4868f4f4c92e94e29e81ca993 |
14 | ″ | ″ | Nffef10bf24084d4eb3fb8d3f174e8239 |
15 | ″ | ″ | sg:journal.1022207 |
16 | ″ | schema:keywords | accurate determination |
17 | ″ | ″ | additional electrodes |
18 | ″ | ″ | amorphous zinc tin oxide thin-film transistors |
19 | ″ | ″ | artifacts |
20 | ″ | ″ | carrier mobility |
21 | ″ | ″ | carrier mobility values |
22 | ″ | ″ | characteristics |
23 | ″ | ″ | charge carrier mobility |
24 | ″ | ″ | charge carrier mobility values |
25 | ″ | ″ | charge transport characteristics |
26 | ″ | ″ | comparison |
27 | ″ | ″ | contact resistance |
28 | ″ | ″ | density dependencies |
29 | ″ | ″ | dependence |
30 | ″ | ″ | dependency |
31 | ″ | ″ | depth |
32 | ″ | ″ | determination |
33 | ″ | ″ | differences |
34 | ″ | ″ | effect |
35 | ″ | ″ | electrode |
36 | ″ | ″ | evaluation |
37 | ″ | ″ | exclusion |
38 | ″ | ″ | form |
39 | ″ | ″ | gate voltage |
40 | ″ | ″ | high mobility samples |
41 | ″ | ″ | incorrect trends |
42 | ″ | ″ | large differences |
43 | ″ | ″ | limitations |
44 | ″ | ″ | metal oxide transistors |
45 | ″ | ″ | misconstruction |
46 | ″ | ″ | mitigation |
47 | ″ | ″ | mobility |
48 | ″ | ″ | mobility regimes |
49 | ″ | ″ | mobility region |
50 | ″ | ″ | mobility values |
51 | ″ | ″ | observed effects |
52 | ″ | ″ | oxide thin-film transistors |
53 | ″ | ″ | parameters |
54 | ″ | ″ | physics |
55 | ″ | ″ | picture |
56 | ″ | ″ | probe |
57 | ″ | ″ | regime |
58 | ″ | ″ | region |
59 | ″ | ″ | resistance |
60 | ″ | ″ | samples |
61 | ″ | ″ | temperature |
62 | ″ | ″ | temperature dependence |
63 | ″ | ″ | thin-film transistors |
64 | ″ | ″ | tin oxide thin film transistors |
65 | ″ | ″ | transistors |
66 | ″ | ″ | transport characteristics |
67 | ″ | ″ | transport parameters |
68 | ″ | ″ | transport physics |
69 | ″ | ″ | transport picture |
70 | ″ | ″ | trap depth |
71 | ″ | ″ | trends |
72 | ″ | ″ | true temperature dependence |
73 | ″ | ″ | use |
74 | ″ | ″ | values |
75 | ″ | ″ | voltage |
76 | ″ | ″ | voltage probe |
77 | ″ | ″ | zinc tin oxide thin-film transistors |
78 | ″ | schema:name | Effects of contact resistance on the evaluation of charge carrier mobilities and transport parameters in amorphous zinc tin oxide thin-film transistors |
79 | ″ | schema:pagination | 1103-1107 |
80 | ″ | schema:productId | N81a5e630e7ed472990395b2b4221229f |
81 | ″ | ″ | Nbbbecb3d771c4f75a99d332747a718d9 |
82 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049565438 |
83 | ″ | ″ | https://doi.org/10.1007/s00339-014-8422-3 |
84 | ″ | schema:sdDatePublished | 2022-06-01T22:12 |
85 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
86 | ″ | schema:sdPublisher | N16e486c3324d42a9b7312e091a94a23a |
87 | ″ | schema:url | https://doi.org/10.1007/s00339-014-8422-3 |
88 | ″ | sgo:license | sg:explorer/license/ |
89 | ″ | sgo:sdDataset | articles |
90 | ″ | rdf:type | schema:ScholarlyArticle |
91 | N16e486c3324d42a9b7312e091a94a23a | schema:name | Springer Nature - SN SciGraph project |
92 | ″ | rdf:type | schema:Organization |
93 | N17d9926dfb0e4a02bf00319794a23f07 | rdf:first | sg:person.01243655221.64 |
94 | ″ | rdf:rest | N65073fc9b9124829a1bf2c4f81cae8bd |
95 | N58f6fba4868f4f4c92e94e29e81ca993 | schema:issueNumber | 4 |
96 | ″ | rdf:type | schema:PublicationIssue |
97 | N65073fc9b9124829a1bf2c4f81cae8bd | rdf:first | sg:person.013341701663.32 |
98 | ″ | rdf:rest | N914613ba15ab40859903cab4265f4faa |
99 | N81a5e630e7ed472990395b2b4221229f | schema:name | doi |
100 | ″ | schema:value | 10.1007/s00339-014-8422-3 |
101 | ″ | rdf:type | schema:PropertyValue |
102 | N914613ba15ab40859903cab4265f4faa | rdf:first | sg:person.0632764457.49 |
103 | ″ | rdf:rest | rdf:nil |
104 | Nbbbecb3d771c4f75a99d332747a718d9 | schema:name | dimensions_id |
105 | ″ | schema:value | pub.1049565438 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | Nffef10bf24084d4eb3fb8d3f174e8239 | schema:volumeNumber | 115 |
108 | ″ | rdf:type | schema:PublicationVolume |
109 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Engineering |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
113 | ″ | schema:name | Materials Engineering |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | sg:grant.5214127 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00339-014-8422-3 |
116 | ″ | rdf:type | schema:MonetaryGrant |
117 | sg:grant.5228382 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00339-014-8422-3 |
118 | ″ | rdf:type | schema:MonetaryGrant |
119 | sg:journal.1022207 | schema:issn | 0947-8396 |
120 | ″ | ″ | 1432-0630 |
121 | ″ | schema:name | Applied Physics A |
122 | ″ | schema:publisher | Springer Nature |
123 | ″ | rdf:type | schema:Periodical |
124 | sg:person.01243655221.64 | schema:affiliation | grid-institutes:grid.13291.38 |
125 | ″ | schema:familyName | Schulz |
126 | ″ | schema:givenName | Leander |
127 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243655221.64 |
128 | ″ | rdf:type | schema:Person |
129 | sg:person.013341701663.32 | schema:affiliation | grid-institutes:grid.412238.e |
130 | ″ | schema:familyName | Yun |
131 | ″ | schema:givenName | Eui-Jung |
132 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013341701663.32 |
133 | ″ | rdf:type | schema:Person |
134 | sg:person.0632764457.49 | schema:affiliation | grid-institutes:grid.89336.37 |
135 | ″ | schema:familyName | Dodabalapur |
136 | ″ | schema:givenName | Ananth |
137 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0632764457.49 |
138 | ″ | rdf:type | schema:Person |
139 | sg:pub.10.1038/nature11434 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1029347259 |
140 | ″ | ″ | https://doi.org/10.1038/nature11434 |
141 | ″ | rdf:type | schema:CreativeWork |
142 | sg:pub.10.1038/nmat2560 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1017244326 |
143 | ″ | ″ | https://doi.org/10.1038/nmat2560 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1557/jmr.2012.134 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1001439981 |
146 | ″ | ″ | https://doi.org/10.1557/jmr.2012.134 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | grid-institutes:grid.13291.38 | schema:alternateName | School of Physical Science and Technology, Sichuan University, 610064, Chengdu, Sichuan, China |
149 | ″ | schema:name | Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA |
150 | ″ | ″ | School of Physical Science and Technology, Sichuan University, 610064, Chengdu, Sichuan, China |
151 | ″ | rdf:type | schema:Organization |
152 | grid-institutes:grid.412238.e | schema:alternateName | College of IT Engineering and Department of System Control Engineering, Hoseo University, 336-795, Asan, Choongnam, South Korea |
153 | ″ | schema:name | College of IT Engineering and Department of System Control Engineering, Hoseo University, 336-795, Asan, Choongnam, South Korea |
154 | ″ | ″ | Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA |
155 | ″ | rdf:type | schema:Organization |
156 | grid-institutes:grid.89336.37 | schema:alternateName | Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA |
157 | ″ | schema:name | Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, USA |
158 | ″ | rdf:type | schema:Organization |