Ontology type: schema:ScholarlyArticle Open Access: True
2013-05-29
AUTHORSSeref Kalem, Peter Werner, Vadim Talalaev
ABSTRACTWe present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000 nm to 1800 nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400–1600 nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications. More... »
PAGES561-567
http://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3
DOIhttp://dx.doi.org/10.1007/s00339-013-7783-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1041471178
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Engineering",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Materials Engineering",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "National Research Institute of Electronics and Cryptology T\u00dcBITAK-BILGEM, Kocaeli, Turkey",
"id": "http://www.grid.ac/institutes/grid.498633.3",
"name": [
"National Research Institute of Electronics and Cryptology T\u00dcBITAK-BILGEM, Kocaeli, Turkey"
],
"type": "Organization"
},
"familyName": "Kalem",
"givenName": "Seref",
"id": "sg:person.01372172363.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372172363.07"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany",
"id": "http://www.grid.ac/institutes/grid.4372.2",
"name": [
"Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany"
],
"type": "Organization"
},
"familyName": "Werner",
"givenName": "Peter",
"id": "sg:person.0703230070.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "ZIK \u2018SiLi-nano\u2019, Martin-Luther-Universit\u00e4t (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany",
"id": "http://www.grid.ac/institutes/grid.9018.0",
"name": [
"Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany",
"ZIK \u2018SiLi-nano\u2019, Martin-Luther-Universit\u00e4t (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany"
],
"type": "Organization"
},
"familyName": "Talalaev",
"givenName": "Vadim",
"id": "sg:person.0615207126.40",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s11671-006-9004-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038783983",
"https://doi.org/10.1007/s11671-006-9004-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1038/nnano.2010.236",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015068215",
"https://doi.org/10.1038/nnano.2010.236"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-05-29",
"datePublishedReg": "2013-05-29",
"description": "We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000\u00a0nm to 1800\u00a0nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400\u20131600\u00a0nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications.",
"genre": "article",
"id": "sg:pub.10.1007/s00339-013-7783-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.8023859",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1022207",
"issn": [
"0947-8396",
"1432-0630"
],
"name": "Applied Physics A",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "112"
}
],
"keywords": [
"silicon wafers",
"Ge NWs",
"Si/Ge nanowires",
"infrared photoluminescence properties",
"carrier confinement effect",
"terms of strain",
"vapor of HF",
"oxidation of Si",
"band edge emission",
"deep level emission",
"deep-level PL",
"wafer surface",
"Ge nanowires",
"Ge layer",
"oxygen-related defects",
"Ge dots",
"wafers",
"gap energy",
"NW surface",
"NIR PL",
"spatial confinement",
"band emission",
"PL intensity",
"NIR region",
"PL properties",
"photoluminescence properties",
"dot formation",
"IR photoluminescence",
"Si",
"competitive properties",
"defect sites",
"dominant property",
"Ge",
"emission",
"NW",
"possible applications",
"properties",
"surface",
"composite bands",
"PL",
"nanowires",
"band",
"photoluminescence",
"confinement",
"HF treatment",
"dots",
"vapor",
"layer",
"energy",
"strong signal",
"transition",
"defects",
"pits",
"applications",
"intensity",
"carriers",
"mixture",
"signals",
"enhancement",
"oxidation",
"process",
"effect",
"method",
"HF",
"effectiveness",
"formation",
"results",
"strains",
"region",
"chemical mixtures",
"terms",
"treatment",
"sites",
"BB"
],
"name": "Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment",
"pagination": "561-567",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1041471178"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s00339-013-7783-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s00339-013-7783-3",
"https://app.dimensions.ai/details/publication/pub.1041471178"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:29",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_609.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s00339-013-7783-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'
This table displays all metadata directly associated to this object as RDF triples.
163 TRIPLES
22 PREDICATES
101 URIs
91 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s00339-013-7783-3 | schema:about | anzsrc-for:09 |
2 | ″ | ″ | anzsrc-for:0912 |
3 | ″ | schema:author | N442946b44ac24bc08a63ce2f512bb4a3 |
4 | ″ | schema:citation | sg:pub.10.1007/s11671-006-9004-x |
5 | ″ | ″ | sg:pub.10.1038/nnano.2010.236 |
6 | ″ | schema:datePublished | 2013-05-29 |
7 | ″ | schema:datePublishedReg | 2013-05-29 |
8 | ″ | schema:description | We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000 nm to 1800 nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400–1600 nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N0a8e80c8f45345f8925afbc8b784d076 |
13 | ″ | ″ | Ne2b6e51134744dbdaeb516dba23dfe73 |
14 | ″ | ″ | sg:journal.1022207 |
15 | ″ | schema:keywords | BB |
16 | ″ | ″ | Ge |
17 | ″ | ″ | Ge NWs |
18 | ″ | ″ | Ge dots |
19 | ″ | ″ | Ge layer |
20 | ″ | ″ | Ge nanowires |
21 | ″ | ″ | HF |
22 | ″ | ″ | HF treatment |
23 | ″ | ″ | IR photoluminescence |
24 | ″ | ″ | NIR PL |
25 | ″ | ″ | NIR region |
26 | ″ | ″ | NW |
27 | ″ | ″ | NW surface |
28 | ″ | ″ | PL |
29 | ″ | ″ | PL intensity |
30 | ″ | ″ | PL properties |
31 | ″ | ″ | Si |
32 | ″ | ″ | Si/Ge nanowires |
33 | ″ | ″ | applications |
34 | ″ | ″ | band |
35 | ″ | ″ | band edge emission |
36 | ″ | ″ | band emission |
37 | ″ | ″ | carrier confinement effect |
38 | ″ | ″ | carriers |
39 | ″ | ″ | chemical mixtures |
40 | ″ | ″ | competitive properties |
41 | ″ | ″ | composite bands |
42 | ″ | ″ | confinement |
43 | ″ | ″ | deep level emission |
44 | ″ | ″ | deep-level PL |
45 | ″ | ″ | defect sites |
46 | ″ | ″ | defects |
47 | ″ | ″ | dominant property |
48 | ″ | ″ | dot formation |
49 | ″ | ″ | dots |
50 | ″ | ″ | effect |
51 | ″ | ″ | effectiveness |
52 | ″ | ″ | emission |
53 | ″ | ″ | energy |
54 | ″ | ″ | enhancement |
55 | ″ | ″ | formation |
56 | ″ | ″ | gap energy |
57 | ″ | ″ | infrared photoluminescence properties |
58 | ″ | ″ | intensity |
59 | ″ | ″ | layer |
60 | ″ | ″ | method |
61 | ″ | ″ | mixture |
62 | ″ | ″ | nanowires |
63 | ″ | ″ | oxidation |
64 | ″ | ″ | oxidation of Si |
65 | ″ | ″ | oxygen-related defects |
66 | ″ | ″ | photoluminescence |
67 | ″ | ″ | photoluminescence properties |
68 | ″ | ″ | pits |
69 | ″ | ″ | possible applications |
70 | ″ | ″ | process |
71 | ″ | ″ | properties |
72 | ″ | ″ | region |
73 | ″ | ″ | results |
74 | ″ | ″ | signals |
75 | ″ | ″ | silicon wafers |
76 | ″ | ″ | sites |
77 | ″ | ″ | spatial confinement |
78 | ″ | ″ | strains |
79 | ″ | ″ | strong signal |
80 | ″ | ″ | surface |
81 | ″ | ″ | terms |
82 | ″ | ″ | terms of strain |
83 | ″ | ″ | transition |
84 | ″ | ″ | treatment |
85 | ″ | ″ | vapor |
86 | ″ | ″ | vapor of HF |
87 | ″ | ″ | wafer surface |
88 | ″ | ″ | wafers |
89 | ″ | schema:name | Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment |
90 | ″ | schema:pagination | 561-567 |
91 | ″ | schema:productId | N1b3a80d2d182448393b5b9be6c60c79e |
92 | ″ | ″ | N5377248270334f52b8418dc318fabaec |
93 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1041471178 |
94 | ″ | ″ | https://doi.org/10.1007/s00339-013-7783-3 |
95 | ″ | schema:sdDatePublished | 2022-05-20T07:29 |
96 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
97 | ″ | schema:sdPublisher | N51b5464c53b64079bf9780619daefe13 |
98 | ″ | schema:url | https://doi.org/10.1007/s00339-013-7783-3 |
99 | ″ | sgo:license | sg:explorer/license/ |
100 | ″ | sgo:sdDataset | articles |
101 | ″ | rdf:type | schema:ScholarlyArticle |
102 | N0a8e80c8f45345f8925afbc8b784d076 | schema:volumeNumber | 112 |
103 | ″ | rdf:type | schema:PublicationVolume |
104 | N1b3a80d2d182448393b5b9be6c60c79e | schema:name | dimensions_id |
105 | ″ | schema:value | pub.1041471178 |
106 | ″ | rdf:type | schema:PropertyValue |
107 | N442946b44ac24bc08a63ce2f512bb4a3 | rdf:first | sg:person.01372172363.07 |
108 | ″ | rdf:rest | N64c8948c488a412da640582c24eee6f6 |
109 | N51b5464c53b64079bf9780619daefe13 | schema:name | Springer Nature - SN SciGraph project |
110 | ″ | rdf:type | schema:Organization |
111 | N5377248270334f52b8418dc318fabaec | schema:name | doi |
112 | ″ | schema:value | 10.1007/s00339-013-7783-3 |
113 | ″ | rdf:type | schema:PropertyValue |
114 | N64c8948c488a412da640582c24eee6f6 | rdf:first | sg:person.0703230070.47 |
115 | ″ | rdf:rest | Nb74b8d05e7bf4d25b006e0a74c0892b9 |
116 | Nb74b8d05e7bf4d25b006e0a74c0892b9 | rdf:first | sg:person.0615207126.40 |
117 | ″ | rdf:rest | rdf:nil |
118 | Ne2b6e51134744dbdaeb516dba23dfe73 | schema:issueNumber | 3 |
119 | ″ | rdf:type | schema:PublicationIssue |
120 | anzsrc-for:09 | schema:inDefinedTermSet | anzsrc-for: |
121 | ″ | schema:name | Engineering |
122 | ″ | rdf:type | schema:DefinedTerm |
123 | anzsrc-for:0912 | schema:inDefinedTermSet | anzsrc-for: |
124 | ″ | schema:name | Materials Engineering |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | sg:grant.8023859 | http://pending.schema.org/fundedItem | sg:pub.10.1007/s00339-013-7783-3 |
127 | ″ | rdf:type | schema:MonetaryGrant |
128 | sg:journal.1022207 | schema:issn | 0947-8396 |
129 | ″ | ″ | 1432-0630 |
130 | ″ | schema:name | Applied Physics A |
131 | ″ | schema:publisher | Springer Nature |
132 | ″ | rdf:type | schema:Periodical |
133 | sg:person.01372172363.07 | schema:affiliation | grid-institutes:grid.498633.3 |
134 | ″ | schema:familyName | Kalem |
135 | ″ | schema:givenName | Seref |
136 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372172363.07 |
137 | ″ | rdf:type | schema:Person |
138 | sg:person.0615207126.40 | schema:affiliation | grid-institutes:grid.9018.0 |
139 | ″ | schema:familyName | Talalaev |
140 | ″ | schema:givenName | Vadim |
141 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40 |
142 | ″ | rdf:type | schema:Person |
143 | sg:person.0703230070.47 | schema:affiliation | grid-institutes:grid.4372.2 |
144 | ″ | schema:familyName | Werner |
145 | ″ | schema:givenName | Peter |
146 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47 |
147 | ″ | rdf:type | schema:Person |
148 | sg:pub.10.1007/s11671-006-9004-x | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1038783983 |
149 | ″ | ″ | https://doi.org/10.1007/s11671-006-9004-x |
150 | ″ | rdf:type | schema:CreativeWork |
151 | sg:pub.10.1038/nnano.2010.236 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015068215 |
152 | ″ | ″ | https://doi.org/10.1038/nnano.2010.236 |
153 | ″ | rdf:type | schema:CreativeWork |
154 | grid-institutes:grid.4372.2 | schema:alternateName | Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany |
155 | ″ | schema:name | Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany |
156 | ″ | rdf:type | schema:Organization |
157 | grid-institutes:grid.498633.3 | schema:alternateName | National Research Institute of Electronics and Cryptology TÜBITAK-BILGEM, Kocaeli, Turkey |
158 | ″ | schema:name | National Research Institute of Electronics and Cryptology TÜBITAK-BILGEM, Kocaeli, Turkey |
159 | ″ | rdf:type | schema:Organization |
160 | grid-institutes:grid.9018.0 | schema:alternateName | ZIK ‘SiLi-nano’, Martin-Luther-Universität (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany |
161 | ″ | schema:name | Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany |
162 | ″ | ″ | ZIK ‘SiLi-nano’, Martin-Luther-Universität (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany |
163 | ″ | rdf:type | schema:Organization |