Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-05-29

AUTHORS

Seref Kalem, Peter Werner, Vadim Talalaev

ABSTRACT

We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000 nm to 1800 nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400–1600 nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications. More... »

PAGES

561-567

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3

DOI

http://dx.doi.org/10.1007/s00339-013-7783-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041471178


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National Research Institute of Electronics and Cryptology T\u00dcBITAK-BILGEM, Kocaeli, Turkey", 
          "id": "http://www.grid.ac/institutes/grid.498633.3", 
          "name": [
            "National Research Institute of Electronics and Cryptology T\u00dcBITAK-BILGEM, Kocaeli, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kalem", 
        "givenName": "Seref", 
        "id": "sg:person.01372172363.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372172363.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Werner", 
        "givenName": "Peter", 
        "id": "sg:person.0703230070.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ZIK \u2018SiLi-nano\u2019, Martin-Luther-Universit\u00e4t (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany", 
          "id": "http://www.grid.ac/institutes/grid.9018.0", 
          "name": [
            "Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany", 
            "ZIK \u2018SiLi-nano\u2019, Martin-Luther-Universit\u00e4t (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talalaev", 
        "givenName": "Vadim", 
        "id": "sg:person.0615207126.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11671-006-9004-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038783983", 
          "https://doi.org/10.1007/s11671-006-9004-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.236", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015068215", 
          "https://doi.org/10.1038/nnano.2010.236"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05-29", 
    "datePublishedReg": "2013-05-29", 
    "description": "We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000\u00a0nm to 1800\u00a0nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400\u20131600\u00a0nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00339-013-7783-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8023859", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "112"
      }
    ], 
    "keywords": [
      "silicon wafers", 
      "Ge NWs", 
      "Si/Ge nanowires", 
      "infrared photoluminescence properties", 
      "carrier confinement effect", 
      "terms of strain", 
      "vapor of HF", 
      "oxidation of Si", 
      "band edge emission", 
      "deep level emission", 
      "deep-level PL", 
      "wafer surface", 
      "Ge nanowires", 
      "Ge layer", 
      "oxygen-related defects", 
      "Ge dots", 
      "wafers", 
      "gap energy", 
      "NW surface", 
      "NIR PL", 
      "spatial confinement", 
      "band emission", 
      "PL intensity", 
      "NIR region", 
      "PL properties", 
      "photoluminescence properties", 
      "dot formation", 
      "IR photoluminescence", 
      "Si", 
      "competitive properties", 
      "defect sites", 
      "dominant property", 
      "Ge", 
      "emission", 
      "NW", 
      "possible applications", 
      "properties", 
      "surface", 
      "composite bands", 
      "PL", 
      "nanowires", 
      "band", 
      "photoluminescence", 
      "confinement", 
      "HF treatment", 
      "dots", 
      "vapor", 
      "layer", 
      "energy", 
      "strong signal", 
      "transition", 
      "defects", 
      "pits", 
      "applications", 
      "intensity", 
      "carriers", 
      "mixture", 
      "signals", 
      "enhancement", 
      "oxidation", 
      "process", 
      "effect", 
      "method", 
      "HF", 
      "effectiveness", 
      "formation", 
      "results", 
      "strains", 
      "region", 
      "chemical mixtures", 
      "terms", 
      "treatment", 
      "sites", 
      "BB"
    ], 
    "name": "Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment", 
    "pagination": "561-567", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041471178"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-013-7783-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-013-7783-3", 
      "https://app.dimensions.ai/details/publication/pub.1041471178"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_609.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00339-013-7783-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-013-7783-3'


 

This table displays all metadata directly associated to this object as RDF triples.

163 TRIPLES      22 PREDICATES      101 URIs      91 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-013-7783-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N442946b44ac24bc08a63ce2f512bb4a3
4 schema:citation sg:pub.10.1007/s11671-006-9004-x
5 sg:pub.10.1038/nnano.2010.236
6 schema:datePublished 2013-05-29
7 schema:datePublishedReg 2013-05-29
8 schema:description We present the room-temperature near-infrared (NIR) photoluminescence (PL) properties of Si/Ge nanowire (NW)-grown silicon wafers which were treated by vapor of HF:HNO3 chemical mixture. This treatment activates or enhances the PL intensity in the NIR region ranging from 1000 nm to 1800 nm. The PL consists of a silicon band-edge emission and a broad composite band which is centered at around 1400–1600 nm. The treatment modifies the wafer surface particularly at defect sites especially pits around NWs and NW surfaces by etching and oxidation of Si and Ge. This process can induce spatial confinement of carriers where band-to-band (BB) emission is the dominant property in Si-capped strained Si/Ge NW-grown wafers. Strong signals were observed at sub-band-gap energies in Ge-capped Si/Ge NW-grown wafers. It was found that NIR PL is a competitive property between the Si BB transition and deep-level emission, which is mainly attributable to Si-related defects, Ge dots and strained Ge layers. The enhancement in BB and deep-level PL is discussed in terms of strain, oxygen-related defects, dot formation and carrier-confinement effects. The results demonstrate the effectiveness of this method in enhancing and tuning NIR PL properties for possible applications.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf N0a8e80c8f45345f8925afbc8b784d076
13 Ne2b6e51134744dbdaeb516dba23dfe73
14 sg:journal.1022207
15 schema:keywords BB
16 Ge
17 Ge NWs
18 Ge dots
19 Ge layer
20 Ge nanowires
21 HF
22 HF treatment
23 IR photoluminescence
24 NIR PL
25 NIR region
26 NW
27 NW surface
28 PL
29 PL intensity
30 PL properties
31 Si
32 Si/Ge nanowires
33 applications
34 band
35 band edge emission
36 band emission
37 carrier confinement effect
38 carriers
39 chemical mixtures
40 competitive properties
41 composite bands
42 confinement
43 deep level emission
44 deep-level PL
45 defect sites
46 defects
47 dominant property
48 dot formation
49 dots
50 effect
51 effectiveness
52 emission
53 energy
54 enhancement
55 formation
56 gap energy
57 infrared photoluminescence properties
58 intensity
59 layer
60 method
61 mixture
62 nanowires
63 oxidation
64 oxidation of Si
65 oxygen-related defects
66 photoluminescence
67 photoluminescence properties
68 pits
69 possible applications
70 process
71 properties
72 region
73 results
74 signals
75 silicon wafers
76 sites
77 spatial confinement
78 strains
79 strong signal
80 surface
81 terms
82 terms of strain
83 transition
84 treatment
85 vapor
86 vapor of HF
87 wafer surface
88 wafers
89 schema:name Near-IR photoluminescence from Si/Ge nanowire-grown silicon wafers: effect of HF treatment
90 schema:pagination 561-567
91 schema:productId N1b3a80d2d182448393b5b9be6c60c79e
92 N5377248270334f52b8418dc318fabaec
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041471178
94 https://doi.org/10.1007/s00339-013-7783-3
95 schema:sdDatePublished 2022-05-20T07:29
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N51b5464c53b64079bf9780619daefe13
98 schema:url https://doi.org/10.1007/s00339-013-7783-3
99 sgo:license sg:explorer/license/
100 sgo:sdDataset articles
101 rdf:type schema:ScholarlyArticle
102 N0a8e80c8f45345f8925afbc8b784d076 schema:volumeNumber 112
103 rdf:type schema:PublicationVolume
104 N1b3a80d2d182448393b5b9be6c60c79e schema:name dimensions_id
105 schema:value pub.1041471178
106 rdf:type schema:PropertyValue
107 N442946b44ac24bc08a63ce2f512bb4a3 rdf:first sg:person.01372172363.07
108 rdf:rest N64c8948c488a412da640582c24eee6f6
109 N51b5464c53b64079bf9780619daefe13 schema:name Springer Nature - SN SciGraph project
110 rdf:type schema:Organization
111 N5377248270334f52b8418dc318fabaec schema:name doi
112 schema:value 10.1007/s00339-013-7783-3
113 rdf:type schema:PropertyValue
114 N64c8948c488a412da640582c24eee6f6 rdf:first sg:person.0703230070.47
115 rdf:rest Nb74b8d05e7bf4d25b006e0a74c0892b9
116 Nb74b8d05e7bf4d25b006e0a74c0892b9 rdf:first sg:person.0615207126.40
117 rdf:rest rdf:nil
118 Ne2b6e51134744dbdaeb516dba23dfe73 schema:issueNumber 3
119 rdf:type schema:PublicationIssue
120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
121 schema:name Engineering
122 rdf:type schema:DefinedTerm
123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
124 schema:name Materials Engineering
125 rdf:type schema:DefinedTerm
126 sg:grant.8023859 http://pending.schema.org/fundedItem sg:pub.10.1007/s00339-013-7783-3
127 rdf:type schema:MonetaryGrant
128 sg:journal.1022207 schema:issn 0947-8396
129 1432-0630
130 schema:name Applied Physics A
131 schema:publisher Springer Nature
132 rdf:type schema:Periodical
133 sg:person.01372172363.07 schema:affiliation grid-institutes:grid.498633.3
134 schema:familyName Kalem
135 schema:givenName Seref
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01372172363.07
137 rdf:type schema:Person
138 sg:person.0615207126.40 schema:affiliation grid-institutes:grid.9018.0
139 schema:familyName Talalaev
140 schema:givenName Vadim
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40
142 rdf:type schema:Person
143 sg:person.0703230070.47 schema:affiliation grid-institutes:grid.4372.2
144 schema:familyName Werner
145 schema:givenName Peter
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0703230070.47
147 rdf:type schema:Person
148 sg:pub.10.1007/s11671-006-9004-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1038783983
149 https://doi.org/10.1007/s11671-006-9004-x
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/nnano.2010.236 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015068215
152 https://doi.org/10.1038/nnano.2010.236
153 rdf:type schema:CreativeWork
154 grid-institutes:grid.4372.2 schema:alternateName Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany
155 schema:name Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany
156 rdf:type schema:Organization
157 grid-institutes:grid.498633.3 schema:alternateName National Research Institute of Electronics and Cryptology TÜBITAK-BILGEM, Kocaeli, Turkey
158 schema:name National Research Institute of Electronics and Cryptology TÜBITAK-BILGEM, Kocaeli, Turkey
159 rdf:type schema:Organization
160 grid-institutes:grid.9018.0 schema:alternateName ZIK ‘SiLi-nano’, Martin-Luther-Universität (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany
161 schema:name Department of Experimental Physics, Max Planck Institute, Halle (Saale), Germany
162 ZIK ‘SiLi-nano’, Martin-Luther-Universität (Halle), Karl-Freiherr-von-Fritsch-Str. 3, 06120, Halle (Saale), Germany
163 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...