Epitaxial growth of μm-sized Cu pyramids on silicon View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2010-06

AUTHORS

Susanne Seyffarth, Hans-Ulrich Krebs

ABSTRACT

Triangular and quadratic Cu pyramids were epitaxially grown on Si(111) and Si(100) substrates, respectively, by pulsed laser deposition at elevated substrate temperatures above 200°C as well as by post-annealing of closed Cu layers prepared at room temperature. In both cases, three-dimensional pyramids with edge lengths of up to 9 μm were obtained, as observed by scanning electron microscopy and atomic force microscopy. Although the macroscopic shape is a pyramid, microscopically the islands consist of columnar grains (with lateral sizes of only about 50 nm at 260°C). The size and shape of the pyramids can be controlled by the substrate used, the amount of material deposited, and the temperature during deposition or annealing. Additionally, first hints were found that the pyramids can be aligned by structuring the substrate. The formation of such large pyramids is explained by a fast diffusion of Cu atoms on Si over distances of some μm and a high jump probability to higher pyramid layers. More... »

PAGES

735-740

Journal

TITLE

Applied Physics A

ISSUE

4

VOLUME

99

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-010-5739-4

DOI

http://dx.doi.org/10.1007/s00339-010-5739-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1041450167


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Institut f\u00fcr Materialphysik, University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seyffarth", 
        "givenName": "Susanne", 
        "id": "sg:person.011551211551.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551211551.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Institut f\u00fcr Materialphysik, University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krebs", 
        "givenName": "Hans-Ulrich", 
        "id": "sg:person.014265454064.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265454064.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1557/jmr.1990.0989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001948532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssa.2210750229", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017208262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-6028(01)01243-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026651520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(99)00366-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027944527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390051430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032972555", 
          "https://doi.org/10.1007/s003390051430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(99)00407-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037071781"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1991114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056973571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.104105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057651676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.109412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057656978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719118"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.2035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060804327"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.72.112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808463"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.71.1125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.581489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062191536"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-06", 
    "datePublishedReg": "2010-06-01", 
    "description": "Triangular and quadratic Cu pyramids were epitaxially grown on Si(111) and Si(100) substrates, respectively, by pulsed laser deposition at elevated substrate temperatures above 200\u00b0C as well as by post-annealing of closed Cu layers prepared at room temperature. In both cases, three-dimensional pyramids with edge lengths of up to 9 \u03bcm were obtained, as observed by scanning electron microscopy and atomic force microscopy. Although the macroscopic shape is a pyramid, microscopically the islands consist of columnar grains (with lateral sizes of only about 50 nm at 260\u00b0C). The size and shape of the pyramids can be controlled by the substrate used, the amount of material deposited, and the temperature during deposition or annealing. Additionally, first hints were found that the pyramids can be aligned by structuring the substrate. The formation of such large pyramids is explained by a fast diffusion of Cu atoms on Si over distances of some \u03bcm and a high jump probability to higher pyramid layers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-010-5739-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "99"
      }
    ], 
    "name": "Epitaxial growth of \u03bcm-sized Cu pyramids on silicon", 
    "pagination": "735-740", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c5750ee0b95346e0180540ddc6e66c84abc58dfdb9c4ae4b694fb58010f89af3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-010-5739-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1041450167"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-010-5739-4", 
      "https://app.dimensions.ai/details/publication/pub.1041450167"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113655_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-010-5739-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-010-5739-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-010-5739-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-010-5739-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-010-5739-4'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-010-5739-4 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nd5363dfd0862492c9a93d745c49fecae
4 schema:citation sg:pub.10.1007/s003390051430
5 https://doi.org/10.1002/pssa.2210750229
6 https://doi.org/10.1016/s0039-6028(01)01243-2
7 https://doi.org/10.1016/s0169-4332(99)00366-9
8 https://doi.org/10.1016/s0169-4332(99)00407-9
9 https://doi.org/10.1051/jp1:1991114
10 https://doi.org/10.1063/1.104105
11 https://doi.org/10.1063/1.109412
12 https://doi.org/10.1103/physreve.53.307
13 https://doi.org/10.1103/physrevlett.68.2035
14 https://doi.org/10.1103/physrevlett.72.112
15 https://doi.org/10.1103/revmodphys.71.1125
16 https://doi.org/10.1116/1.581489
17 https://doi.org/10.1557/jmr.1990.0989
18 schema:datePublished 2010-06
19 schema:datePublishedReg 2010-06-01
20 schema:description Triangular and quadratic Cu pyramids were epitaxially grown on Si(111) and Si(100) substrates, respectively, by pulsed laser deposition at elevated substrate temperatures above 200°C as well as by post-annealing of closed Cu layers prepared at room temperature. In both cases, three-dimensional pyramids with edge lengths of up to 9 μm were obtained, as observed by scanning electron microscopy and atomic force microscopy. Although the macroscopic shape is a pyramid, microscopically the islands consist of columnar grains (with lateral sizes of only about 50 nm at 260°C). The size and shape of the pyramids can be controlled by the substrate used, the amount of material deposited, and the temperature during deposition or annealing. Additionally, first hints were found that the pyramids can be aligned by structuring the substrate. The formation of such large pyramids is explained by a fast diffusion of Cu atoms on Si over distances of some μm and a high jump probability to higher pyramid layers.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N3e5016da62d445a7bfa20842cfb11487
25 Nd788415beb2845f69bb14726515490b7
26 sg:journal.1022207
27 schema:name Epitaxial growth of μm-sized Cu pyramids on silicon
28 schema:pagination 735-740
29 schema:productId N5883682689044b9580ce9955e3f99279
30 N5eb9650f379940ecb5e8862f62ce89f8
31 N67adc985517e4c2fb30ff97159ae9769
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041450167
33 https://doi.org/10.1007/s00339-010-5739-4
34 schema:sdDatePublished 2019-04-11T10:32
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nebf4a93dfacd4a2b831163928c1eeef4
37 schema:url http://link.springer.com/10.1007/s00339-010-5739-4
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N3e5016da62d445a7bfa20842cfb11487 schema:volumeNumber 99
42 rdf:type schema:PublicationVolume
43 N5883682689044b9580ce9955e3f99279 schema:name readcube_id
44 schema:value c5750ee0b95346e0180540ddc6e66c84abc58dfdb9c4ae4b694fb58010f89af3
45 rdf:type schema:PropertyValue
46 N5eb9650f379940ecb5e8862f62ce89f8 schema:name dimensions_id
47 schema:value pub.1041450167
48 rdf:type schema:PropertyValue
49 N67adc985517e4c2fb30ff97159ae9769 schema:name doi
50 schema:value 10.1007/s00339-010-5739-4
51 rdf:type schema:PropertyValue
52 N69fba54a971c4ca09b37992be7e285e9 rdf:first sg:person.014265454064.84
53 rdf:rest rdf:nil
54 Nd5363dfd0862492c9a93d745c49fecae rdf:first sg:person.011551211551.20
55 rdf:rest N69fba54a971c4ca09b37992be7e285e9
56 Nd788415beb2845f69bb14726515490b7 schema:issueNumber 4
57 rdf:type schema:PublicationIssue
58 Nebf4a93dfacd4a2b831163928c1eeef4 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
61 schema:name Physical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
64 schema:name Other Physical Sciences
65 rdf:type schema:DefinedTerm
66 sg:journal.1022207 schema:issn 0947-8396
67 1432-0630
68 schema:name Applied Physics A
69 rdf:type schema:Periodical
70 sg:person.011551211551.20 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
71 schema:familyName Seyffarth
72 schema:givenName Susanne
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011551211551.20
74 rdf:type schema:Person
75 sg:person.014265454064.84 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
76 schema:familyName Krebs
77 schema:givenName Hans-Ulrich
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265454064.84
79 rdf:type schema:Person
80 sg:pub.10.1007/s003390051430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032972555
81 https://doi.org/10.1007/s003390051430
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1002/pssa.2210750229 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017208262
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0039-6028(01)01243-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026651520
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0169-4332(99)00366-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027944527
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0169-4332(99)00407-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037071781
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1051/jp1:1991114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056973571
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1063/1.104105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057651676
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.109412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057656978
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreve.53.307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719118
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.68.2035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804327
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.72.112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808463
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/revmodphys.71.1125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839439
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1116/1.581489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062191536
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1557/jmr.1990.0989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001948532
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
110 schema:name Institut für Materialphysik, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...