Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03

AUTHORS

S. Lazare, R. Bonneau, S. Gaspard, M. Oujja, R. De Nalda, M. Castillejo, A. Sionkowska

ABSTRACT

Self standing films of biopolymers like gelatine, collagen, and chitosan irradiated with single nanosecond or femtosecond laser pulse easily yield on their surface, a nanofoam layer, formed by a cavitation and bubble growth mechanism. The laser foams have interesting properties that challenge the molecular features of the natural extracellular matrix and which make them good candidates for fabrication of artificial matrix (having nanoscopic fibers, large availability of cell adhesion sites, permeability to fluids due to the open cell structure). As part of the mechanistic study, the dynamics of the process has been measured in the nanosecond timescale by recording the optical transmission of the films at 632.8 nm during and after the foaming laser pulse. A rapid drop 100→0% taking place within the first 100 ns supports the cavitation mechanism as described by the previous negative pressure wave model. As modeled a strong pressure rise (∼several thousands of bar) first takes place in the absorption volume due to pressure confinement and finite sound velocity, and then upon relaxation after some delay equal to the pressure transit time gives rise to a rarefaction wave (negative pressure) in which nucleation and bubble growth are very fast. More... »

PAGES

719

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-008-4950-z

DOI

http://dx.doi.org/10.1007/s00339-008-4950-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013564619


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Institut des Sciences Mol\u00e9culaires (ISM) UMR 5255, Universit\u00e9 Bordeaux 1, 351 cours de la Lib\u00e9ration, 33405, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lazare", 
        "givenName": "S.", 
        "id": "sg:person.015337120722.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337120722.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bordeaux", 
          "id": "https://www.grid.ac/institutes/grid.412041.2", 
          "name": [
            "Institut des Sciences Mol\u00e9culaires (ISM) UMR 5255, Universit\u00e9 Bordeaux 1, 351 cours de la Lib\u00e9ration, 33405, Talence, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bonneau", 
        "givenName": "R.", 
        "id": "sg:person.011125152413.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125152413.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical Chemistry \"Rocasolano\"", 
          "id": "https://www.grid.ac/institutes/grid.429036.a", 
          "name": [
            "Instituto de Qu\u00edmica F\u00edsica Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gaspard", 
        "givenName": "S.", 
        "id": "sg:person.01030616623.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030616623.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical Chemistry \"Rocasolano\"", 
          "id": "https://www.grid.ac/institutes/grid.429036.a", 
          "name": [
            "Instituto de Qu\u00edmica F\u00edsica Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Oujja", 
        "givenName": "M.", 
        "id": "sg:person.016460402127.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016460402127.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical Chemistry \"Rocasolano\"", 
          "id": "https://www.grid.ac/institutes/grid.429036.a", 
          "name": [
            "Instituto de Qu\u00edmica F\u00edsica Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "De Nalda", 
        "givenName": "R.", 
        "id": "sg:person.01052423677.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052423677.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physical Chemistry \"Rocasolano\"", 
          "id": "https://www.grid.ac/institutes/grid.429036.a", 
          "name": [
            "Instituto de Qu\u00edmica F\u00edsica Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Castillejo", 
        "givenName": "M.", 
        "id": "sg:person.013471243543.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013471243543.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nicolaus Copernicus University", 
          "id": "https://www.grid.ac/institutes/grid.5374.5", 
          "name": [
            "Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Toru\u0144, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sionkowska", 
        "givenName": "A.", 
        "id": "sg:person.0614553324.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614553324.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1679/aohc.67.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000992720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1679/aohc.67.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000992720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1679/aohc.67.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000992720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epje/e2007-00019-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002285589", 
          "https://doi.org/10.1140/epje/e2007-00019-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotochem.2006.12.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003752564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.597321", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004627543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063771007050090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016703425", 
          "https://doi.org/10.1134/s1063771007050090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1560090406070062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017272135", 
          "https://doi.org/10.1134/s1560090406070062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr010379n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018939907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr010379n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018939907"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-6596/59/1/007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021559008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-3812(97)00278-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023943121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02466877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024201208", 
          "https://doi.org/10.1007/bf02466877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02466877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024201208", 
          "https://doi.org/10.1007/bf02466877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2007.09.099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028170662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-005-3260-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030534417", 
          "https://doi.org/10.1007/s00339-005-3260-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/20/11/114113", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031282998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031680436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.104105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031680436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1070363206090039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031879256", 
          "https://doi.org/10.1134/s1070363206090039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/15/1/308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032119801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.crhy.2006.10.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033808914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/4/r03", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036644242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3727/39/21/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041621585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268970412331292786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042053690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0011-2275(97)00119-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043520830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jphotochem.2007.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044169714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00214-005-0018-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046503178", 
          "https://doi.org/10.1007/s00214-005-0018-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00214-005-0018-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046503178", 
          "https://doi.org/10.1007/s00214-005-0018-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2001.0897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047942280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s107036320609012x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049333176", 
          "https://doi.org/10.1134/s107036320609012x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-008-4649-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049896818", 
          "https://doi.org/10.1007/s00339-008-4649-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-008-4649-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049896818", 
          "https://doi.org/10.1007/s00339-008-4649-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr010436c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053920672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cr010436c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053920672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112006000115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053980903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1656010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057733919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1659970", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057738062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1686222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057762057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1698012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057768751"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1753985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057814430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2728898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057860912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2931539", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057885219"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.337089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057942987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.341707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057948849"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.12062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.49.12062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060569705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.195124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.75.195124", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060621023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.051605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.051605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.71.051605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060732917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1920227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062283919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.423334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062374598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.250.4977.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062540819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.22203/ecm.v014a01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069338802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9783527610662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661369"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03", 
    "datePublishedReg": "2009-03-01", 
    "description": "Self standing films of biopolymers like gelatine, collagen, and chitosan irradiated with single nanosecond or femtosecond laser pulse easily yield on their surface, a nanofoam layer, formed by a cavitation and bubble growth mechanism. The laser foams have interesting properties that challenge the molecular features of the natural extracellular matrix and which make them good candidates for fabrication of artificial matrix (having nanoscopic fibers, large availability of cell adhesion sites, permeability to fluids due to the open cell structure). As part of the mechanistic study, the dynamics of the process has been measured in the nanosecond timescale by recording the optical transmission of the films at 632.8 nm during and after the foaming laser pulse. A rapid drop 100\u21920% taking place within the first 100 ns supports the cavitation mechanism as described by the previous negative pressure wave model. As modeled a strong pressure rise (\u223cseveral thousands of bar) first takes place in the absorption volume due to pressure confinement and finite sound velocity, and then upon relaxation after some delay equal to the pressure transit time gives rise to a rarefaction wave (negative pressure) in which nucleation and bubble growth are very fast.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-008-4950-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "94"
      }
    ], 
    "name": "Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers", 
    "pagination": "719", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "409e357c5eec125230eb1f328bf843e838868a3ffbc60dbcf276759f5711002b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-008-4950-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013564619"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-008-4950-z", 
      "https://app.dimensions.ai/details/publication/pub.1013564619"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13104_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-008-4950-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-008-4950-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-008-4950-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-008-4950-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-008-4950-z'


 

This table displays all metadata directly associated to this object as RDF triples.

253 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-008-4950-z schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7dcc5a249fe544d8a244dda128425c49
4 schema:citation sg:pub.10.1007/bf02466877
5 sg:pub.10.1007/s00214-005-0018-8
6 sg:pub.10.1007/s00339-005-3260-y
7 sg:pub.10.1007/s00339-008-4649-1
8 sg:pub.10.1134/s1063771007050090
9 sg:pub.10.1134/s1070363206090039
10 sg:pub.10.1134/s107036320609012x
11 sg:pub.10.1134/s1560090406070062
12 sg:pub.10.1140/epje/e2007-00019-8
13 https://doi.org/10.1002/9783527610662
14 https://doi.org/10.1016/j.apsusc.2007.09.099
15 https://doi.org/10.1016/j.crhy.2006.10.019
16 https://doi.org/10.1016/j.jphotochem.2006.12.012
17 https://doi.org/10.1016/j.jphotochem.2007.06.024
18 https://doi.org/10.1016/s0011-2275(97)00119-7
19 https://doi.org/10.1016/s0378-3812(97)00278-1
20 https://doi.org/10.1017/s0022112006000115
21 https://doi.org/10.1021/cr010379n
22 https://doi.org/10.1021/cr010436c
23 https://doi.org/10.1063/1.1656010
24 https://doi.org/10.1063/1.1659970
25 https://doi.org/10.1063/1.1686222
26 https://doi.org/10.1063/1.1698012
27 https://doi.org/10.1063/1.1753985
28 https://doi.org/10.1063/1.2728898
29 https://doi.org/10.1063/1.2931539
30 https://doi.org/10.1063/1.337089
31 https://doi.org/10.1063/1.341707
32 https://doi.org/10.1080/00268970412331292786
33 https://doi.org/10.1088/0022-3727/39/21/018
34 https://doi.org/10.1088/0953-8984/15/1/308
35 https://doi.org/10.1088/0953-8984/17/4/r03
36 https://doi.org/10.1088/0953-8984/20/11/114113
37 https://doi.org/10.1088/1742-6596/59/1/007
38 https://doi.org/10.1098/rspa.2001.0897
39 https://doi.org/10.1103/physrevb.49.12062
40 https://doi.org/10.1103/physrevb.75.104105
41 https://doi.org/10.1103/physrevb.75.195124
42 https://doi.org/10.1103/physreve.71.051605
43 https://doi.org/10.1117/12.597321
44 https://doi.org/10.1121/1.1920227
45 https://doi.org/10.1121/1.423334
46 https://doi.org/10.1126/science.250.4977.101
47 https://doi.org/10.1679/aohc.67.31
48 https://doi.org/10.22203/ecm.v014a01
49 schema:datePublished 2009-03
50 schema:datePublishedReg 2009-03-01
51 schema:description Self standing films of biopolymers like gelatine, collagen, and chitosan irradiated with single nanosecond or femtosecond laser pulse easily yield on their surface, a nanofoam layer, formed by a cavitation and bubble growth mechanism. The laser foams have interesting properties that challenge the molecular features of the natural extracellular matrix and which make them good candidates for fabrication of artificial matrix (having nanoscopic fibers, large availability of cell adhesion sites, permeability to fluids due to the open cell structure). As part of the mechanistic study, the dynamics of the process has been measured in the nanosecond timescale by recording the optical transmission of the films at 632.8 nm during and after the foaming laser pulse. A rapid drop 100→0% taking place within the first 100 ns supports the cavitation mechanism as described by the previous negative pressure wave model. As modeled a strong pressure rise (∼several thousands of bar) first takes place in the absorption volume due to pressure confinement and finite sound velocity, and then upon relaxation after some delay equal to the pressure transit time gives rise to a rarefaction wave (negative pressure) in which nucleation and bubble growth are very fast.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N09440ecb5ba5410dbcffd5e1eca5a01e
56 N19358bfaa75b4c9c92783f9e46385579
57 sg:journal.1022207
58 schema:name Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers
59 schema:pagination 719
60 schema:productId N0bc3c858d5e4424ab86d4194f5219240
61 Nf59a17dbd4314af0a8ef15152eb24966
62 Nf7c707353d1241758142984b034f8d14
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013564619
64 https://doi.org/10.1007/s00339-008-4950-z
65 schema:sdDatePublished 2019-04-11T14:33
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N4fd8960f741e4ad598bd336291779dca
68 schema:url http://link.springer.com/10.1007/s00339-008-4950-z
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N09440ecb5ba5410dbcffd5e1eca5a01e schema:issueNumber 4
73 rdf:type schema:PublicationIssue
74 N0bc3c858d5e4424ab86d4194f5219240 schema:name doi
75 schema:value 10.1007/s00339-008-4950-z
76 rdf:type schema:PropertyValue
77 N19358bfaa75b4c9c92783f9e46385579 schema:volumeNumber 94
78 rdf:type schema:PublicationVolume
79 N1a115f89f9cd438a8be7d3e13a60f004 rdf:first sg:person.016460402127.19
80 rdf:rest N52770bac575d4366b59ed5d447cfc24d
81 N4fd8960f741e4ad598bd336291779dca schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N52770bac575d4366b59ed5d447cfc24d rdf:first sg:person.01052423677.64
84 rdf:rest Naa1887dcb9a44a79a4e069821005a4aa
85 N7dcc5a249fe544d8a244dda128425c49 rdf:first sg:person.015337120722.95
86 rdf:rest Nfdb6d94b6de0454d8a14b1afe3dab33f
87 Naa1887dcb9a44a79a4e069821005a4aa rdf:first sg:person.013471243543.57
88 rdf:rest Nc5d6c5aa94a34e6c919c2d31af5a8b63
89 Nc5d6c5aa94a34e6c919c2d31af5a8b63 rdf:first sg:person.0614553324.87
90 rdf:rest rdf:nil
91 Ne93a62a703d6408ea2333ea74f57e0e3 rdf:first sg:person.01030616623.03
92 rdf:rest N1a115f89f9cd438a8be7d3e13a60f004
93 Nf59a17dbd4314af0a8ef15152eb24966 schema:name dimensions_id
94 schema:value pub.1013564619
95 rdf:type schema:PropertyValue
96 Nf7c707353d1241758142984b034f8d14 schema:name readcube_id
97 schema:value 409e357c5eec125230eb1f328bf843e838868a3ffbc60dbcf276759f5711002b
98 rdf:type schema:PropertyValue
99 Nfdb6d94b6de0454d8a14b1afe3dab33f rdf:first sg:person.011125152413.15
100 rdf:rest Ne93a62a703d6408ea2333ea74f57e0e3
101 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
102 schema:name Chemical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
105 schema:name Physical Chemistry (incl. Structural)
106 rdf:type schema:DefinedTerm
107 sg:journal.1022207 schema:issn 0947-8396
108 1432-0630
109 schema:name Applied Physics A
110 rdf:type schema:Periodical
111 sg:person.01030616623.03 schema:affiliation https://www.grid.ac/institutes/grid.429036.a
112 schema:familyName Gaspard
113 schema:givenName S.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01030616623.03
115 rdf:type schema:Person
116 sg:person.01052423677.64 schema:affiliation https://www.grid.ac/institutes/grid.429036.a
117 schema:familyName De Nalda
118 schema:givenName R.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01052423677.64
120 rdf:type schema:Person
121 sg:person.011125152413.15 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
122 schema:familyName Bonneau
123 schema:givenName R.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011125152413.15
125 rdf:type schema:Person
126 sg:person.013471243543.57 schema:affiliation https://www.grid.ac/institutes/grid.429036.a
127 schema:familyName Castillejo
128 schema:givenName M.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013471243543.57
130 rdf:type schema:Person
131 sg:person.015337120722.95 schema:affiliation https://www.grid.ac/institutes/grid.412041.2
132 schema:familyName Lazare
133 schema:givenName S.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015337120722.95
135 rdf:type schema:Person
136 sg:person.016460402127.19 schema:affiliation https://www.grid.ac/institutes/grid.429036.a
137 schema:familyName Oujja
138 schema:givenName M.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016460402127.19
140 rdf:type schema:Person
141 sg:person.0614553324.87 schema:affiliation https://www.grid.ac/institutes/grid.5374.5
142 schema:familyName Sionkowska
143 schema:givenName A.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0614553324.87
145 rdf:type schema:Person
146 sg:pub.10.1007/bf02466877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024201208
147 https://doi.org/10.1007/bf02466877
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s00214-005-0018-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046503178
150 https://doi.org/10.1007/s00214-005-0018-8
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s00339-005-3260-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1030534417
153 https://doi.org/10.1007/s00339-005-3260-y
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s00339-008-4649-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049896818
156 https://doi.org/10.1007/s00339-008-4649-1
157 rdf:type schema:CreativeWork
158 sg:pub.10.1134/s1063771007050090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016703425
159 https://doi.org/10.1134/s1063771007050090
160 rdf:type schema:CreativeWork
161 sg:pub.10.1134/s1070363206090039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031879256
162 https://doi.org/10.1134/s1070363206090039
163 rdf:type schema:CreativeWork
164 sg:pub.10.1134/s107036320609012x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049333176
165 https://doi.org/10.1134/s107036320609012x
166 rdf:type schema:CreativeWork
167 sg:pub.10.1134/s1560090406070062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017272135
168 https://doi.org/10.1134/s1560090406070062
169 rdf:type schema:CreativeWork
170 sg:pub.10.1140/epje/e2007-00019-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002285589
171 https://doi.org/10.1140/epje/e2007-00019-8
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/9783527610662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661369
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.apsusc.2007.09.099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028170662
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.crhy.2006.10.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033808914
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.jphotochem.2006.12.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003752564
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1016/j.jphotochem.2007.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044169714
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1016/s0011-2275(97)00119-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043520830
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1016/s0378-3812(97)00278-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023943121
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1017/s0022112006000115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053980903
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1021/cr010379n schema:sameAs https://app.dimensions.ai/details/publication/pub.1018939907
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1021/cr010436c schema:sameAs https://app.dimensions.ai/details/publication/pub.1053920672
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1063/1.1656010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057733919
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1063/1.1659970 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057738062
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1063/1.1686222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057762057
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1063/1.1698012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057768751
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1063/1.1753985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057814430
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1063/1.2728898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057860912
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1063/1.2931539 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057885219
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1063/1.337089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057942987
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1063/1.341707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057948849
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1080/00268970412331292786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042053690
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1088/0022-3727/39/21/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041621585
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1088/0953-8984/15/1/308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032119801
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1088/0953-8984/17/4/r03 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036644242
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1088/0953-8984/20/11/114113 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031282998
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1088/1742-6596/59/1/007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021559008
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1098/rspa.2001.0897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047942280
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1103/physrevb.49.12062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060569705
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1103/physrevb.75.104105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031680436
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1103/physrevb.75.195124 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060621023
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1103/physreve.71.051605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060732917
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1117/12.597321 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004627543
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1121/1.1920227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062283919
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1121/1.423334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062374598
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1126/science.250.4977.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062540819
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1679/aohc.67.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000992720
242 rdf:type schema:CreativeWork
243 https://doi.org/10.22203/ecm.v014a01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069338802
244 rdf:type schema:CreativeWork
245 https://www.grid.ac/institutes/grid.412041.2 schema:alternateName University of Bordeaux
246 schema:name Institut des Sciences Moléculaires (ISM) UMR 5255, Université Bordeaux 1, 351 cours de la Libération, 33405, Talence, France
247 rdf:type schema:Organization
248 https://www.grid.ac/institutes/grid.429036.a schema:alternateName Institute of Physical Chemistry "Rocasolano"
249 schema:name Instituto de Química Física Rocasolano, CSIC, Serrano 119, 28006, Madrid, Spain
250 rdf:type schema:Organization
251 https://www.grid.ac/institutes/grid.5374.5 schema:alternateName Nicolaus Copernicus University
252 schema:name Faculty of Chemistry, Nicolaus Copernicus University, Gagarin 7, 87-100, Toruń, Poland
253 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...