Frequency dependent smoothing of rough surfaces by laser deposition of ZrO2 View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2008-03

AUTHORS

J. Röder, H.-U. Krebs

ABSTRACT

The development of the surface roughness of amorphous ZrO2 layers with different thicknesses, which were laser deposited on nanocrystalline Ag surfaces, was analyzed by atomic force microscopy. With increasing ZrO2 layer thickness first the surface slightly roughens due to island growth, but above a layer thickness of about 30 nm it continuously smoothens. From the power spectral densities it is clear that the smoothing processes are frequency dependent. First the high-frequency surface features vanish before lower roughness frequencies are decreased. Although the starting roughness is only 1 nm, a ZrO2 layer thickness of about 4 μm is necessary to smooth the long-wavelength surface features. From the decrease of the roughness with ZrO2 layer thickness and the observed final spectral densities, the dominant smoothing mechanisms were identified as downhill currents, probably induced by the energetic ions impinging on the substrate surface during deposition. More... »

PAGES

609-613

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-007-4375-0

DOI

http://dx.doi.org/10.1007/s00339-007-4375-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001612084


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Institut f\u00fcr Materialphysik, University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "R\u00f6der", 
        "givenName": "J.", 
        "id": "sg:person.014072101577.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072101577.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of G\u00f6ttingen", 
          "id": "https://www.grid.ac/institutes/grid.7450.6", 
          "name": [
            "Institut f\u00fcr Materialphysik, University of G\u00f6ttingen, Friedrich-Hund-Platz 1, 37077, G\u00f6ttingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Krebs", 
        "givenName": "H.-U.", 
        "id": "sg:person.014265454064.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265454064.84"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003390051438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020239873", 
          "https://doi.org/10.1007/s003390051438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-4332(95)00466-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026886458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(73)90063-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050904253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(73)90063-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050904253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/jp1:1991114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056973571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1368864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057699707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1489088", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057711854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1688993", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057763128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1699658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057770102"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1722742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057789717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2335977", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057850037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.373781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058008154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.5860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.5860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.68.859", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805050"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1355360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062166184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1396639", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062166664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.575561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062185608"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1114577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062452389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511599798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098667651"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-03", 
    "datePublishedReg": "2008-03-01", 
    "description": "The development of the surface roughness of amorphous ZrO2 layers with different thicknesses, which were laser deposited on nanocrystalline Ag surfaces, was analyzed by atomic force microscopy. With increasing ZrO2 layer thickness first the surface slightly roughens due to island growth, but above a layer thickness of about 30 nm it continuously smoothens. From the power spectral densities it is clear that the smoothing processes are frequency dependent. First the high-frequency surface features vanish before lower roughness frequencies are decreased. Although the starting roughness is only 1 nm, a ZrO2 layer thickness of about 4 \u03bcm is necessary to smooth the long-wavelength surface features. From the decrease of the roughness with ZrO2 layer thickness and the observed final spectral densities, the dominant smoothing mechanisms were identified as downhill currents, probably induced by the energetic ions impinging on the substrate surface during deposition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-007-4375-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "90"
      }
    ], 
    "name": "Frequency dependent smoothing of rough surfaces by laser deposition of ZrO2", 
    "pagination": "609-613", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "07adf04d26bb022e67ace92f1ecfda3fb5d9f6c00be514d945bc73a7ce1d69b7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-007-4375-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001612084"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-007-4375-0", 
      "https://app.dimensions.ai/details/publication/pub.1001612084"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000373_0000000373/records_13099_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-007-4375-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-007-4375-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-007-4375-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-007-4375-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-007-4375-0'


 

This table displays all metadata directly associated to this object as RDF triples.

123 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-007-4375-0 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N11e2b3b5a52d45809a75d91ea5e09c72
4 schema:citation sg:pub.10.1007/s003390051438
5 https://doi.org/10.1016/0022-3093(73)90063-x
6 https://doi.org/10.1016/0169-4332(95)00466-1
7 https://doi.org/10.1017/cbo9780511599798
8 https://doi.org/10.1051/jp1:1991114
9 https://doi.org/10.1063/1.1368864
10 https://doi.org/10.1063/1.1489088
11 https://doi.org/10.1063/1.1688993
12 https://doi.org/10.1063/1.1699658
13 https://doi.org/10.1063/1.1722742
14 https://doi.org/10.1063/1.2335977
15 https://doi.org/10.1063/1.373781
16 https://doi.org/10.1103/physrevb.54.5860
17 https://doi.org/10.1103/physrevlett.68.859
18 https://doi.org/10.1116/1.1355360
19 https://doi.org/10.1116/1.1396639
20 https://doi.org/10.1116/1.575561
21 https://doi.org/10.1126/science.1114577
22 schema:datePublished 2008-03
23 schema:datePublishedReg 2008-03-01
24 schema:description The development of the surface roughness of amorphous ZrO2 layers with different thicknesses, which were laser deposited on nanocrystalline Ag surfaces, was analyzed by atomic force microscopy. With increasing ZrO2 layer thickness first the surface slightly roughens due to island growth, but above a layer thickness of about 30 nm it continuously smoothens. From the power spectral densities it is clear that the smoothing processes are frequency dependent. First the high-frequency surface features vanish before lower roughness frequencies are decreased. Although the starting roughness is only 1 nm, a ZrO2 layer thickness of about 4 μm is necessary to smooth the long-wavelength surface features. From the decrease of the roughness with ZrO2 layer thickness and the observed final spectral densities, the dominant smoothing mechanisms were identified as downhill currents, probably induced by the energetic ions impinging on the substrate surface during deposition.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree true
28 schema:isPartOf N039bb7bf76794cb6897a88276209cba7
29 N88ebb4503c3444488a6e076583262e32
30 sg:journal.1022207
31 schema:name Frequency dependent smoothing of rough surfaces by laser deposition of ZrO2
32 schema:pagination 609-613
33 schema:productId N29fb9f999b2044e6ba59e9a214c024b9
34 N2d4a645a02434b8eb04890950a50ef7c
35 Na664613803ea4fabb402bc4cf6b65594
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001612084
37 https://doi.org/10.1007/s00339-007-4375-0
38 schema:sdDatePublished 2019-04-11T14:31
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N9cf9387400474d08a6a1478864e57824
41 schema:url http://link.springer.com/10.1007/s00339-007-4375-0
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N039bb7bf76794cb6897a88276209cba7 schema:volumeNumber 90
46 rdf:type schema:PublicationVolume
47 N11e2b3b5a52d45809a75d91ea5e09c72 rdf:first sg:person.014072101577.55
48 rdf:rest Nf9ac0ab5477b4c4c8834af2c45b04838
49 N29fb9f999b2044e6ba59e9a214c024b9 schema:name readcube_id
50 schema:value 07adf04d26bb022e67ace92f1ecfda3fb5d9f6c00be514d945bc73a7ce1d69b7
51 rdf:type schema:PropertyValue
52 N2d4a645a02434b8eb04890950a50ef7c schema:name doi
53 schema:value 10.1007/s00339-007-4375-0
54 rdf:type schema:PropertyValue
55 N88ebb4503c3444488a6e076583262e32 schema:issueNumber 4
56 rdf:type schema:PublicationIssue
57 N9cf9387400474d08a6a1478864e57824 schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 Na664613803ea4fabb402bc4cf6b65594 schema:name dimensions_id
60 schema:value pub.1001612084
61 rdf:type schema:PropertyValue
62 Nf9ac0ab5477b4c4c8834af2c45b04838 rdf:first sg:person.014265454064.84
63 rdf:rest rdf:nil
64 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
65 schema:name Chemical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
68 schema:name Physical Chemistry (incl. Structural)
69 rdf:type schema:DefinedTerm
70 sg:journal.1022207 schema:issn 0947-8396
71 1432-0630
72 schema:name Applied Physics A
73 rdf:type schema:Periodical
74 sg:person.014072101577.55 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
75 schema:familyName Röder
76 schema:givenName J.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072101577.55
78 rdf:type schema:Person
79 sg:person.014265454064.84 schema:affiliation https://www.grid.ac/institutes/grid.7450.6
80 schema:familyName Krebs
81 schema:givenName H.-U.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014265454064.84
83 rdf:type schema:Person
84 sg:pub.10.1007/s003390051438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020239873
85 https://doi.org/10.1007/s003390051438
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/0022-3093(73)90063-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050904253
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/0169-4332(95)00466-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026886458
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1017/cbo9780511599798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098667651
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1051/jp1:1991114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056973571
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1063/1.1368864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057699707
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1063/1.1489088 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057711854
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.1688993 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057763128
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1063/1.1699658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057770102
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.1722742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057789717
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.2335977 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057850037
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.373781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058008154
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevb.54.5860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582550
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.68.859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805050
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1116/1.1355360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062166184
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1116/1.1396639 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062166664
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1116/1.575561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062185608
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1126/science.1114577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062452389
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.7450.6 schema:alternateName University of Göttingen
122 schema:name Institut für Materialphysik, University of Göttingen, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
123 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...