High-voltage asymmetric supercapacitors operating in aqueous electrolyte View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-03

AUTHORS

V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, F. Béguin

ABSTRACT

The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems. More... »

PAGES

567-573

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8

DOI

http://dx.doi.org/10.1007/s00339-005-3397-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046676484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "CRMD, CNRS University, 1B rue de la F\u00e9rollerie, 45071, Orl\u00e9ans Cedex 02, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khomenko", 
        "givenName": "V.", 
        "id": "sg:person.011470653603.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470653603.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CRMD, CNRS University, 1B rue de la F\u00e9rollerie, 45071, Orl\u00e9ans Cedex 02, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raymundo-Pi\u00f1ero", 
        "givenName": "E.", 
        "id": "sg:person.011213555173.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213555173.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pozna\u0144 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6963.a", 
          "name": [
            "Poznan University of Technology, ul. Piotrowo 3, 60-965, Poznan, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frackowiak", 
        "givenName": "E.", 
        "id": "sg:person.01130343047.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130343047.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CRMD, CNRS University, 1B rue de la F\u00e9rollerie, 45071, Orl\u00e9ans Cedex 02, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9guin", 
        "givenName": "F.", 
        "id": "sg:person.0644475535.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644475535.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-003-2418-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000033105", 
          "https://doi.org/10.1007/s00339-003-2418-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(98)00258-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004952460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2481(01)00285-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008426577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(01)00613-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011577851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1400742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012952526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(95)00494-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013938344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0254-0584(02)00022-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(02)00093-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020770306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(01)01037-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020938385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0728(84)80229-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027851512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1506463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028214352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jssc.1998.8128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029218750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(02)00304-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033149694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1393216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034836618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1346536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035877507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2004.10.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035937383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(00)00183-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042092686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(84)80201-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043505121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4686(01)00715-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044602166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1834913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046811908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm020408q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050363583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm020408q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050363583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(96)02474-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052960876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1511188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1566411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1650835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063188356"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03", 
    "datePublishedReg": "2006-03-01", 
    "description": "The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge\u2013discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-005-3397-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "name": "High-voltage asymmetric supercapacitors operating in aqueous electrolyte", 
    "pagination": "567-573", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de5930b3a2c5e7f511676fa83f38dcab5297b9547ad7a1d287027cb0b5b140c2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-005-3397-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046676484"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-005-3397-8", 
      "https://app.dimensions.ai/details/publication/pub.1046676484"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-005-3397-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-005-3397-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N2707330ca2f646fdad3bbdaedef6ddb8
4 schema:citation sg:pub.10.1007/978-1-4757-3058-6
5 sg:pub.10.1007/s00339-003-2418-8
6 https://doi.org/10.1006/jssc.1998.8128
7 https://doi.org/10.1016/0013-4686(95)00494-7
8 https://doi.org/10.1016/0022-0728(84)80229-6
9 https://doi.org/10.1016/j.electacta.2004.10.078
10 https://doi.org/10.1016/s0008-6223(00)00183-4
11 https://doi.org/10.1016/s0009-2614(01)01037-5
12 https://doi.org/10.1016/s0013-4686(01)00715-0
13 https://doi.org/10.1016/s0022-0728(84)80201-6
14 https://doi.org/10.1016/s0167-2738(02)00093-0
15 https://doi.org/10.1016/s0254-0584(02)00022-6
16 https://doi.org/10.1016/s0378-7753(01)00613-9
17 https://doi.org/10.1016/s0378-7753(02)00304-x
18 https://doi.org/10.1016/s0378-7753(96)02474-3
19 https://doi.org/10.1016/s0378-7753(98)00258-4
20 https://doi.org/10.1016/s1388-2481(01)00285-5
21 https://doi.org/10.1021/cm020408q
22 https://doi.org/10.1149/1.1346536
23 https://doi.org/10.1149/1.1393216
24 https://doi.org/10.1149/1.1400742
25 https://doi.org/10.1149/1.1506463
26 https://doi.org/10.1149/1.1511188
27 https://doi.org/10.1149/1.1566411
28 https://doi.org/10.1149/1.1650835
29 https://doi.org/10.1149/1.1834913
30 schema:datePublished 2006-03
31 schema:datePublishedReg 2006-03-01
32 schema:description The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N32af13bfac0040a9bb51d3590475a859
37 Na99ff0db0dc441f4bea47c4096d0d0f2
38 sg:journal.1022207
39 schema:name High-voltage asymmetric supercapacitors operating in aqueous electrolyte
40 schema:pagination 567-573
41 schema:productId N216e2b35dd4f4932bec88554f9fa8a87
42 Ndd33901b149846beb08609b924a06d65
43 Nf1e749b12fc4455b93d52e336387951c
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046676484
45 https://doi.org/10.1007/s00339-005-3397-8
46 schema:sdDatePublished 2019-04-11T12:23
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Nb5b77b18c5a4476197bf381ea20360ca
49 schema:url http://link.springer.com/10.1007/s00339-005-3397-8
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N216e2b35dd4f4932bec88554f9fa8a87 schema:name doi
54 schema:value 10.1007/s00339-005-3397-8
55 rdf:type schema:PropertyValue
56 N2707330ca2f646fdad3bbdaedef6ddb8 rdf:first sg:person.011470653603.61
57 rdf:rest N830268fb70724225ba43d373a17e6603
58 N32af13bfac0040a9bb51d3590475a859 schema:volumeNumber 82
59 rdf:type schema:PublicationVolume
60 N3a4c4c67f39e43b8a3068368058880f1 rdf:first sg:person.0644475535.88
61 rdf:rest rdf:nil
62 N68238d3e7d8d4c53847e86a5c5125b8f schema:name CRMD, CNRS University, 1B rue de la Férollerie, 45071, Orléans Cedex 02, France
63 rdf:type schema:Organization
64 N830268fb70724225ba43d373a17e6603 rdf:first sg:person.011213555173.25
65 rdf:rest Nd23788296a874e4a90b07a651a280ce7
66 Na99ff0db0dc441f4bea47c4096d0d0f2 schema:issueNumber 4
67 rdf:type schema:PublicationIssue
68 Nb5b77b18c5a4476197bf381ea20360ca schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nd23788296a874e4a90b07a651a280ce7 rdf:first sg:person.01130343047.29
71 rdf:rest N3a4c4c67f39e43b8a3068368058880f1
72 Ndd33901b149846beb08609b924a06d65 schema:name readcube_id
73 schema:value de5930b3a2c5e7f511676fa83f38dcab5297b9547ad7a1d287027cb0b5b140c2
74 rdf:type schema:PropertyValue
75 Nf1e749b12fc4455b93d52e336387951c schema:name dimensions_id
76 schema:value pub.1046676484
77 rdf:type schema:PropertyValue
78 Nf67eaf260f0f45fba97e9da855727daa schema:name CRMD, CNRS University, 1B rue de la Férollerie, 45071, Orléans Cedex 02, France
79 rdf:type schema:Organization
80 Nf6f9ab51eb2d42d4b5d5e0d78eb95872 schema:name CRMD, CNRS University, 1B rue de la Férollerie, 45071, Orléans Cedex 02, France
81 rdf:type schema:Organization
82 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
83 schema:name Chemical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Chemistry (incl. Structural)
87 rdf:type schema:DefinedTerm
88 sg:journal.1022207 schema:issn 0947-8396
89 1432-0630
90 schema:name Applied Physics A
91 rdf:type schema:Periodical
92 sg:person.011213555173.25 schema:affiliation Nf6f9ab51eb2d42d4b5d5e0d78eb95872
93 schema:familyName Raymundo-Piñero
94 schema:givenName E.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213555173.25
96 rdf:type schema:Person
97 sg:person.01130343047.29 schema:affiliation https://www.grid.ac/institutes/grid.6963.a
98 schema:familyName Frackowiak
99 schema:givenName E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130343047.29
101 rdf:type schema:Person
102 sg:person.011470653603.61 schema:affiliation Nf67eaf260f0f45fba97e9da855727daa
103 schema:familyName Khomenko
104 schema:givenName V.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470653603.61
106 rdf:type schema:Person
107 sg:person.0644475535.88 schema:affiliation N68238d3e7d8d4c53847e86a5c5125b8f
108 schema:familyName Béguin
109 schema:givenName F.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644475535.88
111 rdf:type schema:Person
112 sg:pub.10.1007/978-1-4757-3058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040777413
113 https://doi.org/10.1007/978-1-4757-3058-6
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00339-003-2418-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000033105
116 https://doi.org/10.1007/s00339-003-2418-8
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1006/jssc.1998.8128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218750
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0013-4686(95)00494-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013938344
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0022-0728(84)80229-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027851512
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.electacta.2004.10.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035937383
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0008-6223(00)00183-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042092686
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0009-2614(01)01037-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020938385
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0013-4686(01)00715-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044602166
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0022-0728(84)80201-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043505121
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0167-2738(02)00093-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020770306
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0254-0584(02)00022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015623584
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0378-7753(01)00613-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011577851
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0378-7753(02)00304-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033149694
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0378-7753(96)02474-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960876
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0378-7753(98)00258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004952460
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s1388-2481(01)00285-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008426577
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/cm020408q schema:sameAs https://app.dimensions.ai/details/publication/pub.1050363583
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1149/1.1346536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035877507
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1149/1.1393216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034836618
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1149/1.1400742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012952526
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1149/1.1506463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028214352
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1149/1.1511188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187490
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1149/1.1566411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187806
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1149/1.1650835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063188356
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1149/1.1834913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046811908
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.6963.a schema:alternateName Poznań University of Technology
167 schema:name Poznan University of Technology, ul. Piotrowo 3, 60-965, Poznan, Poland
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...