High-voltage asymmetric supercapacitors operating in aqueous electrolyte View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-03

AUTHORS

V. Khomenko, E. Raymundo-Piñero, E. Frackowiak, F. Béguin

ABSTRACT

The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems. More... »

PAGES

567-573

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8

DOI

http://dx.doi.org/10.1007/s00339-005-3397-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1046676484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "CRMD, CNRS University, 1B rue de la F\u00e9rollerie, 45071, Orl\u00e9ans Cedex 02, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khomenko", 
        "givenName": "V.", 
        "id": "sg:person.011470653603.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470653603.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CRMD, CNRS University, 1B rue de la F\u00e9rollerie, 45071, Orl\u00e9ans Cedex 02, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Raymundo-Pi\u00f1ero", 
        "givenName": "E.", 
        "id": "sg:person.011213555173.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213555173.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pozna\u0144 University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6963.a", 
          "name": [
            "Poznan University of Technology, ul. Piotrowo 3, 60-965, Poznan, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frackowiak", 
        "givenName": "E.", 
        "id": "sg:person.01130343047.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130343047.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "CRMD, CNRS University, 1B rue de la F\u00e9rollerie, 45071, Orl\u00e9ans Cedex 02, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e9guin", 
        "givenName": "F.", 
        "id": "sg:person.0644475535.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644475535.88"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00339-003-2418-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000033105", 
          "https://doi.org/10.1007/s00339-003-2418-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(98)00258-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004952460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1388-2481(01)00285-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008426577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(01)00613-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011577851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1400742", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012952526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-4686(95)00494-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013938344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0254-0584(02)00022-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015623584"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(02)00093-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020770306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(01)01037-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020938385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-0728(84)80229-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027851512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1506463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028214352"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jssc.1998.8128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029218750"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(02)00304-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033149694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1393216", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034836618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1346536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035877507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.electacta.2004.10.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035937383"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3058-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040777413", 
          "https://doi.org/10.1007/978-1-4757-3058-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0008-6223(00)00183-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042092686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0728(84)80201-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043505121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0013-4686(01)00715-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044602166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1834913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046811908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm020408q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050363583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm020408q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050363583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0378-7753(96)02474-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052960876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1511188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1566411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063187806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1149/1.1650835", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063188356"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-03", 
    "datePublishedReg": "2006-03-01", 
    "description": "The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge\u2013discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-005-3397-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "82"
      }
    ], 
    "name": "High-voltage asymmetric supercapacitors operating in aqueous electrolyte", 
    "pagination": "567-573", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "de5930b3a2c5e7f511676fa83f38dcab5297b9547ad7a1d287027cb0b5b140c2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-005-3397-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1046676484"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-005-3397-8", 
      "https://app.dimensions.ai/details/publication/pub.1046676484"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87094_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-005-3397-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3397-8'


 

This table displays all metadata directly associated to this object as RDF triples.

168 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-005-3397-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N86edff0962a1429d9b8ecf1aee17113e
4 schema:citation sg:pub.10.1007/978-1-4757-3058-6
5 sg:pub.10.1007/s00339-003-2418-8
6 https://doi.org/10.1006/jssc.1998.8128
7 https://doi.org/10.1016/0013-4686(95)00494-7
8 https://doi.org/10.1016/0022-0728(84)80229-6
9 https://doi.org/10.1016/j.electacta.2004.10.078
10 https://doi.org/10.1016/s0008-6223(00)00183-4
11 https://doi.org/10.1016/s0009-2614(01)01037-5
12 https://doi.org/10.1016/s0013-4686(01)00715-0
13 https://doi.org/10.1016/s0022-0728(84)80201-6
14 https://doi.org/10.1016/s0167-2738(02)00093-0
15 https://doi.org/10.1016/s0254-0584(02)00022-6
16 https://doi.org/10.1016/s0378-7753(01)00613-9
17 https://doi.org/10.1016/s0378-7753(02)00304-x
18 https://doi.org/10.1016/s0378-7753(96)02474-3
19 https://doi.org/10.1016/s0378-7753(98)00258-4
20 https://doi.org/10.1016/s1388-2481(01)00285-5
21 https://doi.org/10.1021/cm020408q
22 https://doi.org/10.1149/1.1346536
23 https://doi.org/10.1149/1.1393216
24 https://doi.org/10.1149/1.1400742
25 https://doi.org/10.1149/1.1506463
26 https://doi.org/10.1149/1.1511188
27 https://doi.org/10.1149/1.1566411
28 https://doi.org/10.1149/1.1650835
29 https://doi.org/10.1149/1.1834913
30 schema:datePublished 2006-03
31 schema:datePublishedReg 2006-03-01
32 schema:description The performance of supercapacitors based on different materials with pseudocapacitive properties such as several conducting polymers (ECPs), amorphous manganese dioxide (a-MnO2), and activated carbon is reported. Composite electrodes of high resiliency and good electronic conductivity were obtained by mixing the active materials with carbon nanotubes. The various limitations of all the above-mentioned materials, when used as negative and positive electrodes in traditional symmetric systems, are shown. It is demonstrated that a successful application of ECPs and a-MnO2 in supercapacitor technologies is possible only in an asymmetric configuration, i.e. with electrodes of different nature for positive and negative polarizations. Several types of asymmetric capacitors were developed by combining ECPs, a-MnO2, and activated carbon and characterized in aqueous electrolyte by galvanostatic charge–discharge, cyclic voltammetry, and impedance spectroscopy. The best device considering the specific energy and power is the asymmetric supercapacitor using a-MnO2 and poly(3,4-ethylenedioxythiophene) (PEDOT) for the positive and negative electrodes, respectively. It has an operating voltage of 1.8 V, which is attributed to different operating potentials of both electrodes, and good electrochemical stability in neutral aqueous electrolyte. According to the voltage value, the energy density of the asymmetric capacitor at a current density of 250 mA/g is found to be 13.5 W h/kg, which is about ten times more than for a symmetric capacitor based on PEDOT in an aqueous medium. The asymmetric capacitor provides two times higher power than a symmetric capacitor based on activated carbon in organic electrolyte, and is thus extremely promising for the development of environmentally friendly systems.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N7d0d2fe6372c453d9ac2d325e1f21c10
37 Na1e532c52b444c6db5979631cd1df34a
38 sg:journal.1022207
39 schema:name High-voltage asymmetric supercapacitors operating in aqueous electrolyte
40 schema:pagination 567-573
41 schema:productId N3b1bfffb6c4d4febb502d9c7b895600a
42 N6a47beb2d6784fb581a1eacde6617899
43 Nb1bf131b12fc40f7acf368b6dbd2f818
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046676484
45 https://doi.org/10.1007/s00339-005-3397-8
46 schema:sdDatePublished 2019-04-11T12:23
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher Ne9fd4db4193d4574a065180b33a71abb
49 schema:url http://link.springer.com/10.1007/s00339-005-3397-8
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N00ca03b1438d40c29f881fc5954a9561 schema:name CRMD, CNRS University, 1B rue de la Férollerie, 45071, Orléans Cedex 02, France
54 rdf:type schema:Organization
55 N03f7b6f9b8d94e2aac20dd55ec683e39 rdf:first sg:person.011213555173.25
56 rdf:rest N1a542583d0c24274be0cd53e608cb73f
57 N1a542583d0c24274be0cd53e608cb73f rdf:first sg:person.01130343047.29
58 rdf:rest Nd75f3d697dff46cfa5d2f63b4647bddd
59 N3b1bfffb6c4d4febb502d9c7b895600a schema:name readcube_id
60 schema:value de5930b3a2c5e7f511676fa83f38dcab5297b9547ad7a1d287027cb0b5b140c2
61 rdf:type schema:PropertyValue
62 N6a47beb2d6784fb581a1eacde6617899 schema:name doi
63 schema:value 10.1007/s00339-005-3397-8
64 rdf:type schema:PropertyValue
65 N7d0d2fe6372c453d9ac2d325e1f21c10 schema:issueNumber 4
66 rdf:type schema:PublicationIssue
67 N86edff0962a1429d9b8ecf1aee17113e rdf:first sg:person.011470653603.61
68 rdf:rest N03f7b6f9b8d94e2aac20dd55ec683e39
69 N95d34ddc3b194541b907b44b4ed868b7 schema:name CRMD, CNRS University, 1B rue de la Férollerie, 45071, Orléans Cedex 02, France
70 rdf:type schema:Organization
71 Na1e532c52b444c6db5979631cd1df34a schema:volumeNumber 82
72 rdf:type schema:PublicationVolume
73 Nb1bf131b12fc40f7acf368b6dbd2f818 schema:name dimensions_id
74 schema:value pub.1046676484
75 rdf:type schema:PropertyValue
76 Ncb9e3e1d5b89463c9930591db2a09232 schema:name CRMD, CNRS University, 1B rue de la Férollerie, 45071, Orléans Cedex 02, France
77 rdf:type schema:Organization
78 Nd75f3d697dff46cfa5d2f63b4647bddd rdf:first sg:person.0644475535.88
79 rdf:rest rdf:nil
80 Ne9fd4db4193d4574a065180b33a71abb schema:name Springer Nature - SN SciGraph project
81 rdf:type schema:Organization
82 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
83 schema:name Chemical Sciences
84 rdf:type schema:DefinedTerm
85 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Chemistry (incl. Structural)
87 rdf:type schema:DefinedTerm
88 sg:journal.1022207 schema:issn 0947-8396
89 1432-0630
90 schema:name Applied Physics A
91 rdf:type schema:Periodical
92 sg:person.011213555173.25 schema:affiliation N00ca03b1438d40c29f881fc5954a9561
93 schema:familyName Raymundo-Piñero
94 schema:givenName E.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011213555173.25
96 rdf:type schema:Person
97 sg:person.01130343047.29 schema:affiliation https://www.grid.ac/institutes/grid.6963.a
98 schema:familyName Frackowiak
99 schema:givenName E.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01130343047.29
101 rdf:type schema:Person
102 sg:person.011470653603.61 schema:affiliation Ncb9e3e1d5b89463c9930591db2a09232
103 schema:familyName Khomenko
104 schema:givenName V.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011470653603.61
106 rdf:type schema:Person
107 sg:person.0644475535.88 schema:affiliation N95d34ddc3b194541b907b44b4ed868b7
108 schema:familyName Béguin
109 schema:givenName F.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644475535.88
111 rdf:type schema:Person
112 sg:pub.10.1007/978-1-4757-3058-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040777413
113 https://doi.org/10.1007/978-1-4757-3058-6
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s00339-003-2418-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000033105
116 https://doi.org/10.1007/s00339-003-2418-8
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1006/jssc.1998.8128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218750
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/0013-4686(95)00494-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013938344
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/0022-0728(84)80229-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027851512
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.electacta.2004.10.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035937383
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0008-6223(00)00183-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042092686
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/s0009-2614(01)01037-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020938385
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0013-4686(01)00715-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044602166
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s0022-0728(84)80201-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043505121
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/s0167-2738(02)00093-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020770306
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/s0254-0584(02)00022-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015623584
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/s0378-7753(01)00613-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011577851
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/s0378-7753(02)00304-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033149694
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/s0378-7753(96)02474-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052960876
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/s0378-7753(98)00258-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004952460
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/s1388-2481(01)00285-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008426577
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1021/cm020408q schema:sameAs https://app.dimensions.ai/details/publication/pub.1050363583
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1149/1.1346536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035877507
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1149/1.1393216 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034836618
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1149/1.1400742 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012952526
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1149/1.1506463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028214352
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1149/1.1511188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187490
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1149/1.1566411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063187806
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1149/1.1650835 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063188356
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1149/1.1834913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046811908
165 rdf:type schema:CreativeWork
166 https://www.grid.ac/institutes/grid.6963.a schema:alternateName Poznań University of Technology
167 schema:name Poznan University of Technology, ul. Piotrowo 3, 60-965, Poznan, Poland
168 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...