Electrical behavior of size-controlled Si nanocrystals arranged as single layers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-03-02

AUTHORS

T.Z. Lu, J. Shen, B. Mereu, M. Alexe, R. Scholz, V. Talalaev, M. Zacharias

ABSTRACT

A metal–oxide–semiconductor structure containing a single layer of size-controlled silicon nanocrystals embedded into gate oxide was fabricated. Size control for the silicon nanocrystals was realized by using a SiO2/SiO/SiO2 layer structure with the embedded SiO layer having the thickness of the desired Si nanocrystals and using a high-temperature annealing for forming the silicon nanocrystals. Current–voltage, capacitance–voltage, and conductance–voltage characteristics were measured for a sample containing 4-nm-sized crystals. From the Fowler–Nordheim plot an effective barrier height of 1.6 eV is estimated for our silicon nanocrystals. Electron trapping, storing, and de-trapping in silicon nanocrystals were observed by capacitance–voltage and conductance–voltage measurements. The charge density was measured to be 1.6×1012 /cm2, which is nearly identical to the silicon-nanocrystal density measured approximately via a transmission electron microscopy image. Conductance measurements reveal a very low interface charge of our structure. More... »

PAGES

1631-1634

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-005-3220-6

DOI

http://dx.doi.org/10.1007/s00339-005-3220-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1026049559


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "T.Z.", 
        "id": "sg:person.015004614047.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004614047.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shen", 
        "givenName": "J.", 
        "id": "sg:person.07674503647.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674503647.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mereu", 
        "givenName": "B.", 
        "id": "sg:person.011155761701.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155761701.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Alexe", 
        "givenName": "M.", 
        "id": "sg:person.0623260666.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623260666.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scholz", 
        "givenName": "R.", 
        "id": "sg:person.01304264107.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304264107.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talalaev", 
        "givenName": "V.", 
        "id": "sg:person.0615207126.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany", 
          "id": "http://www.grid.ac/institutes/grid.450270.4", 
          "name": [
            "Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zacharias", 
        "givenName": "M.", 
        "id": "sg:person.0647503447.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647503447.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003390000553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040624423", 
          "https://doi.org/10.1007/s003390000553"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/proc-638-f9.2.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067949447", 
          "https://doi.org/10.1557/proc-638-f9.2.1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-03-02", 
    "datePublishedReg": "2005-03-02", 
    "description": "A metal\u2013oxide\u2013semiconductor structure containing a single layer of size-controlled silicon nanocrystals embedded into gate oxide was fabricated. Size control for the silicon nanocrystals was realized by using a SiO2/SiO/SiO2 layer structure with the embedded SiO layer having the thickness of the desired Si nanocrystals and using a high-temperature annealing for forming the silicon nanocrystals. Current\u2013voltage, capacitance\u2013voltage, and conductance\u2013voltage characteristics were measured for a sample containing 4-nm-sized crystals. From the Fowler\u2013Nordheim plot an effective barrier height of 1.6\u00a0eV is estimated for our silicon nanocrystals. Electron trapping, storing, and de-trapping in silicon nanocrystals were observed by capacitance\u2013voltage and conductance\u2013voltage measurements. The charge density was measured to be 1.6\u00d71012\u00a0/cm2, which is nearly identical to the silicon-nanocrystal density measured approximately via a transmission electron microscopy image. Conductance measurements reveal a very low interface charge of our structure.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00339-005-3220-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "80"
      }
    ], 
    "keywords": [
      "silicon nanocrystals", 
      "Si nanocrystals", 
      "size-controlled silicon nanocrystals", 
      "transmission electron microscopy images", 
      "size-controlled Si nanocrystals", 
      "electron microscopy images", 
      "SiO2 layer structure", 
      "high-temperature annealing", 
      "single layer", 
      "nanocrystals", 
      "Fowler-Nordheim plots", 
      "conductance\u2013voltage (G/\u03c9\u2013V) measurements", 
      "effective barrier height", 
      "gate oxide", 
      "semiconductor structures", 
      "size control", 
      "microscopy images", 
      "conductance-voltage characteristics", 
      "SiO layer", 
      "interface charge", 
      "electrical behavior", 
      "barrier height", 
      "layer structure", 
      "sized crystals", 
      "layer", 
      "charge density", 
      "annealing", 
      "oxide", 
      "conductance measurements", 
      "density", 
      "structure", 
      "measurements", 
      "thickness", 
      "electrons", 
      "height", 
      "crystals", 
      "charge", 
      "behavior", 
      "characteristics", 
      "images", 
      "samples", 
      "control", 
      "plots"
    ], 
    "name": "Electrical behavior of size-controlled Si nanocrystals arranged as single layers", 
    "pagination": "1631-1634", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1026049559"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-005-3220-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-005-3220-6", 
      "https://app.dimensions.ai/details/publication/pub.1026049559"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_405.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00339-005-3220-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3220-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3220-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3220-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-005-3220-6'


 

This table displays all metadata directly associated to this object as RDF triples.

151 TRIPLES      22 PREDICATES      70 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-005-3220-6 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N12f2e8a28b324df184846a3b43f5ece9
4 schema:citation sg:pub.10.1007/s003390000553
5 sg:pub.10.1557/proc-638-f9.2.1
6 schema:datePublished 2005-03-02
7 schema:datePublishedReg 2005-03-02
8 schema:description A metal–oxide–semiconductor structure containing a single layer of size-controlled silicon nanocrystals embedded into gate oxide was fabricated. Size control for the silicon nanocrystals was realized by using a SiO2/SiO/SiO2 layer structure with the embedded SiO layer having the thickness of the desired Si nanocrystals and using a high-temperature annealing for forming the silicon nanocrystals. Current–voltage, capacitance–voltage, and conductance–voltage characteristics were measured for a sample containing 4-nm-sized crystals. From the Fowler–Nordheim plot an effective barrier height of 1.6 eV is estimated for our silicon nanocrystals. Electron trapping, storing, and de-trapping in silicon nanocrystals were observed by capacitance–voltage and conductance–voltage measurements. The charge density was measured to be 1.6×1012 /cm2, which is nearly identical to the silicon-nanocrystal density measured approximately via a transmission electron microscopy image. Conductance measurements reveal a very low interface charge of our structure.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N753f6aab09234111a9881f44fa73be1f
13 N88ce99141a0c42cfb1a90bcffea3271c
14 sg:journal.1022207
15 schema:keywords Fowler-Nordheim plots
16 Si nanocrystals
17 SiO layer
18 SiO2 layer structure
19 annealing
20 barrier height
21 behavior
22 characteristics
23 charge
24 charge density
25 conductance measurements
26 conductance-voltage characteristics
27 conductance–voltage (G/ω–V) measurements
28 control
29 crystals
30 density
31 effective barrier height
32 electrical behavior
33 electron microscopy images
34 electrons
35 gate oxide
36 height
37 high-temperature annealing
38 images
39 interface charge
40 layer
41 layer structure
42 measurements
43 microscopy images
44 nanocrystals
45 oxide
46 plots
47 samples
48 semiconductor structures
49 silicon nanocrystals
50 single layer
51 size control
52 size-controlled Si nanocrystals
53 size-controlled silicon nanocrystals
54 sized crystals
55 structure
56 thickness
57 transmission electron microscopy images
58 schema:name Electrical behavior of size-controlled Si nanocrystals arranged as single layers
59 schema:pagination 1631-1634
60 schema:productId N5733bc0d37ee4b428e401c56c1366153
61 N8e574957a1e44b9bbbaa2793d9886dd2
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026049559
63 https://doi.org/10.1007/s00339-005-3220-6
64 schema:sdDatePublished 2022-05-20T07:23
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N7b55317a8b2d4161966638a9819fc8e2
67 schema:url https://doi.org/10.1007/s00339-005-3220-6
68 sgo:license sg:explorer/license/
69 sgo:sdDataset articles
70 rdf:type schema:ScholarlyArticle
71 N12f2e8a28b324df184846a3b43f5ece9 rdf:first sg:person.015004614047.38
72 rdf:rest N618f67e7381b449f8fab6ca2f9d0f5b5
73 N5733bc0d37ee4b428e401c56c1366153 schema:name dimensions_id
74 schema:value pub.1026049559
75 rdf:type schema:PropertyValue
76 N618f67e7381b449f8fab6ca2f9d0f5b5 rdf:first sg:person.07674503647.40
77 rdf:rest N98d54061d7a94f8aa19dcef92b23bbce
78 N6b2ffd01e06a4c93941063d7ba4714a1 rdf:first sg:person.01304264107.30
79 rdf:rest N7a2ca1b702054dccbe19b38cf40fde84
80 N753f6aab09234111a9881f44fa73be1f schema:volumeNumber 80
81 rdf:type schema:PublicationVolume
82 N7a2ca1b702054dccbe19b38cf40fde84 rdf:first sg:person.0615207126.40
83 rdf:rest N7d7991dac09348958cca8f62f4371e09
84 N7b55317a8b2d4161966638a9819fc8e2 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 N7d7991dac09348958cca8f62f4371e09 rdf:first sg:person.0647503447.64
87 rdf:rest rdf:nil
88 N88ce99141a0c42cfb1a90bcffea3271c schema:issueNumber 8
89 rdf:type schema:PublicationIssue
90 N8e574957a1e44b9bbbaa2793d9886dd2 schema:name doi
91 schema:value 10.1007/s00339-005-3220-6
92 rdf:type schema:PropertyValue
93 N98d54061d7a94f8aa19dcef92b23bbce rdf:first sg:person.011155761701.43
94 rdf:rest Ncbfaf0a2e58142e8bc584d6e3569c9e3
95 Ncbfaf0a2e58142e8bc584d6e3569c9e3 rdf:first sg:person.0623260666.89
96 rdf:rest N6b2ffd01e06a4c93941063d7ba4714a1
97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
98 schema:name Engineering
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
101 schema:name Materials Engineering
102 rdf:type schema:DefinedTerm
103 sg:journal.1022207 schema:issn 0947-8396
104 1432-0630
105 schema:name Applied Physics A
106 schema:publisher Springer Nature
107 rdf:type schema:Periodical
108 sg:person.011155761701.43 schema:affiliation grid-institutes:grid.450270.4
109 schema:familyName Mereu
110 schema:givenName B.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011155761701.43
112 rdf:type schema:Person
113 sg:person.01304264107.30 schema:affiliation grid-institutes:grid.450270.4
114 schema:familyName Scholz
115 schema:givenName R.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304264107.30
117 rdf:type schema:Person
118 sg:person.015004614047.38 schema:affiliation grid-institutes:grid.450270.4
119 schema:familyName Lu
120 schema:givenName T.Z.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015004614047.38
122 rdf:type schema:Person
123 sg:person.0615207126.40 schema:affiliation grid-institutes:grid.450270.4
124 schema:familyName Talalaev
125 schema:givenName V.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40
127 rdf:type schema:Person
128 sg:person.0623260666.89 schema:affiliation grid-institutes:grid.450270.4
129 schema:familyName Alexe
130 schema:givenName M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623260666.89
132 rdf:type schema:Person
133 sg:person.0647503447.64 schema:affiliation grid-institutes:grid.450270.4
134 schema:familyName Zacharias
135 schema:givenName M.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0647503447.64
137 rdf:type schema:Person
138 sg:person.07674503647.40 schema:affiliation grid-institutes:grid.450270.4
139 schema:familyName Shen
140 schema:givenName J.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07674503647.40
142 rdf:type schema:Person
143 sg:pub.10.1007/s003390000553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040624423
144 https://doi.org/10.1007/s003390000553
145 rdf:type schema:CreativeWork
146 sg:pub.10.1557/proc-638-f9.2.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067949447
147 https://doi.org/10.1557/proc-638-f9.2.1
148 rdf:type schema:CreativeWork
149 grid-institutes:grid.450270.4 schema:alternateName Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
150 schema:name Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
151 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...