Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

S.E. Kirkwood, A.C. van Popta, Y.Y. Tsui, R. Fedosejevs

ABSTRACT

The single-shot ablation threshold and incubation coefficient of copper were investigated using an amplified near-infrared, femtosecond Ti:sapphire laser. To date, the near-infrared femtosecond ablation threshold of copper has been reported in the range of several hundred millijoules per cm2 based primarily on multiple shot ablation studies. A careful study of the single shot ablation threshold for copper was carried out yielding an incident single-shot ablation threshold of (1.06±0.12) J/cm2 for a clean copper foil surface. This was determined by measuring the diameters of the ablation spots as a function of the laser pulse energy using scanning electron microscopy for spatially Gaussian laser spots. When multiple shots were taken on the same spot, a reduction in ablation threshold was observed, consistent with a multiple shot incubation coefficient of 0.76±0.02. Similar experiments on 250 nm and 500 nm copper thin films sputtered on a silicon substrate demonstrated that scaling the threshold values with the absorbance of energy at the surface yields a consistent absorbed fluence threshold for copper of (59±10) mJ/cm2. This absorbed threshold value is consistent with the expected value from a two-temperature model for the heating of copper with an electron-lattice coupling constant of g=1017 Wm-3 K-1. Single-shot rippling of the surface in the threshold ablation intensity regime was also observed for the foil target but not for the smooth thin film target. More... »

PAGES

729-735

References to SciGraph publications

Journal

TITLE

Applied Physics A

ISSUE

4

VOLUME

81

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-004-3135-7

DOI

http://dx.doi.org/10.1007/s00339-004-3135-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039637831


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alberta", 
          "id": "https://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Alberta, T6G 2V4, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kirkwood", 
        "givenName": "S.E.", 
        "id": "sg:person.0623334622.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623334622.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alberta", 
          "id": "https://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Alberta, T6G 2V4, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Popta", 
        "givenName": "A.C.", 
        "id": "sg:person.01146367626.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146367626.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alberta", 
          "id": "https://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Alberta, T6G 2V4, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tsui", 
        "givenName": "Y.Y.", 
        "id": "sg:person.01144655152.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144655152.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alberta", 
          "id": "https://www.grid.ac/institutes/grid.17089.37", 
          "name": [
            "Department of Electrical and Computer Engineering, University of Alberta, T6G 2V4, Edmonton, Alberta, Canada"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fedosejevs", 
        "givenName": "R.", 
        "id": "sg:person.0637103547.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637103547.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01538207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003566905", 
          "https://doi.org/10.1007/bf01538207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01538207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003566905", 
          "https://doi.org/10.1007/bf01538207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00331903", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010951732", 
          "https://doi.org/10.1007/bf00331903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0301-0104(99)00330-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011040711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(96)00613-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011852792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.280568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022744691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(01)00679-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024329628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04074-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025790540", 
          "https://doi.org/10.1007/978-3-662-04074-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04074-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025790540", 
          "https://doi.org/10.1007/978-3-662-04074-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01567638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035718160", 
          "https://doi.org/10.1007/bf01567638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.406367", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041756334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003390051417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044382670", 
          "https://doi.org/10.1007/s003390051417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(99)00432-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046873433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1329869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.371129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058005534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.1155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.27.1155", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060531891"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.62.1202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.1212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.1212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794698"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.61.2886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060798089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.14.002716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065168703"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/josab.5.000648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065176862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/ol.7.000196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065240672"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-09", 
    "datePublishedReg": "2005-09-01", 
    "description": "The single-shot ablation threshold and incubation coefficient of copper were investigated using an amplified near-infrared, femtosecond Ti:sapphire laser. To date, the near-infrared femtosecond ablation threshold of copper has been reported in the range of several hundred millijoules per cm2 based primarily on multiple shot ablation studies. A careful study of the single shot ablation threshold for copper was carried out yielding an incident single-shot ablation threshold of (1.06\u00b10.12) J/cm2 for a clean copper foil surface. This was determined by measuring the diameters of the ablation spots as a function of the laser pulse energy using scanning electron microscopy for spatially Gaussian laser spots. When multiple shots were taken on the same spot, a reduction in ablation threshold was observed, consistent with a multiple shot incubation coefficient of 0.76\u00b10.02. Similar experiments on 250 nm and 500 nm copper thin films sputtered on a silicon substrate demonstrated that scaling the threshold values with the absorbance of energy at the surface yields a consistent absorbed fluence threshold for copper of (59\u00b110) mJ/cm2. This absorbed threshold value is consistent with the expected value from a two-temperature model for the heating of copper with an electron-lattice coupling constant of g=1017 Wm-3 K-1. Single-shot rippling of the surface in the threshold ablation intensity regime was also observed for the foil target but not for the smooth thin film target.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00339-004-3135-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "81"
      }
    ], 
    "name": "Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper", 
    "pagination": "729-735", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bcd0e9eaba5a273f9b13f4f581f9e385b2408e60c6189091d1ecf05962f19310"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-004-3135-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039637831"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-004-3135-7", 
      "https://app.dimensions.ai/details/publication/pub.1039637831"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000490.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s00339-004-3135-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-004-3135-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-004-3135-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-004-3135-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-004-3135-7'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-004-3135-7 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nf555482ff7ca4c189d390ab4227db21c
4 schema:citation sg:pub.10.1007/978-3-662-04074-4
5 sg:pub.10.1007/bf00331903
6 sg:pub.10.1007/bf01538207
7 sg:pub.10.1007/bf01567638
8 sg:pub.10.1007/s003390051417
9 https://doi.org/10.1016/s0169-4332(01)00679-1
10 https://doi.org/10.1016/s0169-4332(96)00613-7
11 https://doi.org/10.1016/s0169-4332(99)00432-8
12 https://doi.org/10.1016/s0301-0104(99)00330-4
13 https://doi.org/10.1063/1.1329869
14 https://doi.org/10.1063/1.371129
15 https://doi.org/10.1103/physrevb.27.1155
16 https://doi.org/10.1103/physreve.62.1202
17 https://doi.org/10.1103/physrevlett.58.1212
18 https://doi.org/10.1103/physrevlett.61.2886
19 https://doi.org/10.1117/12.280568
20 https://doi.org/10.1117/12.406367
21 https://doi.org/10.1364/josab.14.002716
22 https://doi.org/10.1364/josab.5.000648
23 https://doi.org/10.1364/ol.7.000196
24 schema:datePublished 2005-09
25 schema:datePublishedReg 2005-09-01
26 schema:description The single-shot ablation threshold and incubation coefficient of copper were investigated using an amplified near-infrared, femtosecond Ti:sapphire laser. To date, the near-infrared femtosecond ablation threshold of copper has been reported in the range of several hundred millijoules per cm2 based primarily on multiple shot ablation studies. A careful study of the single shot ablation threshold for copper was carried out yielding an incident single-shot ablation threshold of (1.06±0.12) J/cm2 for a clean copper foil surface. This was determined by measuring the diameters of the ablation spots as a function of the laser pulse energy using scanning electron microscopy for spatially Gaussian laser spots. When multiple shots were taken on the same spot, a reduction in ablation threshold was observed, consistent with a multiple shot incubation coefficient of 0.76±0.02. Similar experiments on 250 nm and 500 nm copper thin films sputtered on a silicon substrate demonstrated that scaling the threshold values with the absorbance of energy at the surface yields a consistent absorbed fluence threshold for copper of (59±10) mJ/cm2. This absorbed threshold value is consistent with the expected value from a two-temperature model for the heating of copper with an electron-lattice coupling constant of g=1017 Wm-3 K-1. Single-shot rippling of the surface in the threshold ablation intensity regime was also observed for the foil target but not for the smooth thin film target.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N7f23ea3a317b43888f791f107e3b5fe8
31 Nb2d67a92a0fd407b96743e32513e2d26
32 sg:journal.1022207
33 schema:name Single and multiple shot near-infrared femtosecond laser pulse ablation thresholds of copper
34 schema:pagination 729-735
35 schema:productId N2553260cb5f240bdb5c633e0f11b165d
36 N56100070ef9a485886ef58edd6e7f49e
37 N962d2cec7da748a892bab7d0e4dfeef8
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039637831
39 https://doi.org/10.1007/s00339-004-3135-7
40 schema:sdDatePublished 2019-04-10T21:32
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N9c21981299c74098b6e96ee303214599
43 schema:url http://link.springer.com/10.1007/s00339-004-3135-7
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N07a7165d7c574a088fe80a9a912b626c rdf:first sg:person.01144655152.00
48 rdf:rest N43260f00aa7b4334a2507b2296f879b8
49 N2553260cb5f240bdb5c633e0f11b165d schema:name doi
50 schema:value 10.1007/s00339-004-3135-7
51 rdf:type schema:PropertyValue
52 N43260f00aa7b4334a2507b2296f879b8 rdf:first sg:person.0637103547.30
53 rdf:rest rdf:nil
54 N56100070ef9a485886ef58edd6e7f49e schema:name dimensions_id
55 schema:value pub.1039637831
56 rdf:type schema:PropertyValue
57 N7f23ea3a317b43888f791f107e3b5fe8 schema:volumeNumber 81
58 rdf:type schema:PublicationVolume
59 N962d2cec7da748a892bab7d0e4dfeef8 schema:name readcube_id
60 schema:value bcd0e9eaba5a273f9b13f4f581f9e385b2408e60c6189091d1ecf05962f19310
61 rdf:type schema:PropertyValue
62 N9c21981299c74098b6e96ee303214599 schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 Nb2d67a92a0fd407b96743e32513e2d26 schema:issueNumber 4
65 rdf:type schema:PublicationIssue
66 Nf1d6312a7c33425daaa78a8bf5f8a034 rdf:first sg:person.01146367626.54
67 rdf:rest N07a7165d7c574a088fe80a9a912b626c
68 Nf555482ff7ca4c189d390ab4227db21c rdf:first sg:person.0623334622.65
69 rdf:rest Nf1d6312a7c33425daaa78a8bf5f8a034
70 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
71 schema:name Physical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
74 schema:name Other Physical Sciences
75 rdf:type schema:DefinedTerm
76 sg:journal.1022207 schema:issn 0947-8396
77 1432-0630
78 schema:name Applied Physics A
79 rdf:type schema:Periodical
80 sg:person.01144655152.00 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
81 schema:familyName Tsui
82 schema:givenName Y.Y.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144655152.00
84 rdf:type schema:Person
85 sg:person.01146367626.54 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
86 schema:familyName van Popta
87 schema:givenName A.C.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01146367626.54
89 rdf:type schema:Person
90 sg:person.0623334622.65 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
91 schema:familyName Kirkwood
92 schema:givenName S.E.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0623334622.65
94 rdf:type schema:Person
95 sg:person.0637103547.30 schema:affiliation https://www.grid.ac/institutes/grid.17089.37
96 schema:familyName Fedosejevs
97 schema:givenName R.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0637103547.30
99 rdf:type schema:Person
100 sg:pub.10.1007/978-3-662-04074-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025790540
101 https://doi.org/10.1007/978-3-662-04074-4
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/bf00331903 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010951732
104 https://doi.org/10.1007/bf00331903
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01538207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003566905
107 https://doi.org/10.1007/bf01538207
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf01567638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035718160
110 https://doi.org/10.1007/bf01567638
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s003390051417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044382670
113 https://doi.org/10.1007/s003390051417
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/s0169-4332(01)00679-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024329628
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/s0169-4332(96)00613-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011852792
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/s0169-4332(99)00432-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046873433
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0301-0104(99)00330-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011040711
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.1329869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695449
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.371129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058005534
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.27.1155 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060531891
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.62.1202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725443
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevlett.58.1212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794698
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.61.2886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060798089
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1117/12.280568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022744691
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1117/12.406367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041756334
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1364/josab.14.002716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065168703
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1364/josab.5.000648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065176862
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1364/ol.7.000196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065240672
144 rdf:type schema:CreativeWork
145 https://www.grid.ac/institutes/grid.17089.37 schema:alternateName University of Alberta
146 schema:name Department of Electrical and Computer Engineering, University of Alberta, T6G 2V4, Edmonton, Alberta, Canada
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...