Electronic structure and dynamics of optically excited single-wall carbon nanotubes View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2004-05-01

AUTHORS

A. Hagen, G. Moos, V. Talalaev, T. Hertel

ABSTRACT

We have studied the electronic structure and charge-carrier dynamics of individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using optical and electron–spectroscopic techniques. The electronic structure of semiconducting SWNTs in the band-gap region is analyzed using near-infrared absorption spectroscopy. A semi-empirical expression for E11S transition energies, based on tight-binding calculations is found to give striking agreement with experimental data. Time-resolved PL from dispersed SWNT-micelles shows a decay with a time constant of about 15 ps. Using time-resolved photoemission we also find that the electron–phonon (e–ph) coupling in metallic tubes is characterized by a very small e–ph mass-enhancement of 0.0004. Ultrafast electron–electron scattering of photo-excited carriers in nanotube ropes is finally found to lead to internal thermalization of the electronic system within about 200 fs. More... »

PAGES

1137-1145

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-003-2465-1

DOI

http://dx.doi.org/10.1007/s00339-003-2465-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027913434


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0205", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Optical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4\u20136, 14195, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4\u20136, 14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hagen", 
        "givenName": "A.", 
        "id": "sg:person.0626214064.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626214064.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4\u20136, 14195, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4\u20136, 14195, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moos", 
        "givenName": "G.", 
        "id": "sg:person.01352512064.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352512064.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max-Born-Institut f\u00fcr Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2 A, 12489, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.419569.6", 
          "name": [
            "Max-Born-Institut f\u00fcr Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2 A, 12489, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Talalaev", 
        "givenName": "V.", 
        "id": "sg:person.0615207126.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA", 
          "id": "http://www.grid.ac/institutes/grid.152326.1", 
          "name": [
            "Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4\u20136, 14195, Berlin, Germany", 
            "Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hertel", 
        "givenName": "T.", 
        "id": "sg:person.01061005060.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061005060.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s003390201415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029129905", 
          "https://doi.org/10.1007/s003390201415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050628739", 
          "https://doi.org/10.1038/34139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1140/epjb/e2002-00224-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032635516", 
          "https://doi.org/10.1140/epjb/e2002-00224-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/34145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022721610", 
          "https://doi.org/10.1038/34145"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-05-01", 
    "datePublishedReg": "2004-05-01", 
    "description": "We have studied the electronic structure and charge-carrier dynamics of individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using optical and electron\u2013spectroscopic techniques. The electronic structure of semiconducting SWNTs in the band-gap region is analyzed using near-infrared absorption spectroscopy. A semi-empirical expression for E11S transition energies, based on tight-binding calculations is found to give striking agreement with experimental data. Time-resolved PL from dispersed SWNT-micelles shows a decay with a time constant of about 15\u00a0ps. Using time-resolved photoemission we also find that the electron\u2013phonon (e\u2013ph) coupling in metallic tubes is characterized by a very small e\u2013ph mass-enhancement of 0.0004. Ultrafast electron\u2013electron scattering of photo-excited carriers in nanotube ropes is finally found to lead to internal thermalization of the electronic system within about 200\u00a0fs.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00339-003-2465-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "electronic structure", 
      "single-wall carbon nanotubes", 
      "time-resolved photoemission", 
      "electron-electron scattering", 
      "photo-excited carriers", 
      "electron spectroscopic techniques", 
      "time-resolved PL", 
      "electron-phonon coupling", 
      "charge carrier dynamics", 
      "band gap region", 
      "internal thermalization", 
      "transition energies", 
      "binding calculations", 
      "e-ph", 
      "absorption spectroscopy", 
      "individual single-wall carbon nanotubes", 
      "single-wall carbon", 
      "semi-empirical expression", 
      "carbon nanotubes", 
      "experimental data", 
      "electronic systems", 
      "nanotube ropes", 
      "photoemission", 
      "thermalization", 
      "fs", 
      "metallic tubes", 
      "scattering", 
      "PS", 
      "decay", 
      "spectroscopy", 
      "dynamics", 
      "coupling", 
      "energy", 
      "structure", 
      "calculations", 
      "rope", 
      "nanotubes", 
      "PL", 
      "agreement", 
      "carbon", 
      "carriers", 
      "region", 
      "technique", 
      "tube", 
      "system", 
      "time", 
      "data", 
      "expression"
    ], 
    "name": "Electronic structure and dynamics of optically excited single-wall carbon nanotubes", 
    "pagination": "1137-1145", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027913434"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-003-2465-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-003-2465-1", 
      "https://app.dimensions.ai/details/publication/pub.1027913434"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_378.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00339-003-2465-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2465-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2465-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2465-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2465-1'


 

This table displays all metadata directly associated to this object as RDF triples.

162 TRIPLES      22 PREDICATES      80 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-003-2465-1 schema:about anzsrc-for:02
2 anzsrc-for:0204
3 anzsrc-for:0205
4 anzsrc-for:09
5 anzsrc-for:0912
6 schema:author Nafbc1f0245364748adf9e8d947c6c52d
7 schema:citation sg:pub.10.1007/s003390201415
8 sg:pub.10.1038/34139
9 sg:pub.10.1038/34145
10 sg:pub.10.1140/epjb/e2002-00224-8
11 schema:datePublished 2004-05-01
12 schema:datePublishedReg 2004-05-01
13 schema:description We have studied the electronic structure and charge-carrier dynamics of individual single-wall carbon nanotubes (SWNTs) and nanotube ropes using optical and electron–spectroscopic techniques. The electronic structure of semiconducting SWNTs in the band-gap region is analyzed using near-infrared absorption spectroscopy. A semi-empirical expression for E11S transition energies, based on tight-binding calculations is found to give striking agreement with experimental data. Time-resolved PL from dispersed SWNT-micelles shows a decay with a time constant of about 15 ps. Using time-resolved photoemission we also find that the electron–phonon (e–ph) coupling in metallic tubes is characterized by a very small e–ph mass-enhancement of 0.0004. Ultrafast electron–electron scattering of photo-excited carriers in nanotube ropes is finally found to lead to internal thermalization of the electronic system within about 200 fs.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree true
17 schema:isPartOf N167559a031264f48a7a348103e131b18
18 Nc49ca4ebe57842b4b91130b77a3cf1bd
19 sg:journal.1022207
20 schema:keywords PL
21 PS
22 absorption spectroscopy
23 agreement
24 band gap region
25 binding calculations
26 calculations
27 carbon
28 carbon nanotubes
29 carriers
30 charge carrier dynamics
31 coupling
32 data
33 decay
34 dynamics
35 e-ph
36 electron spectroscopic techniques
37 electron-electron scattering
38 electron-phonon coupling
39 electronic structure
40 electronic systems
41 energy
42 experimental data
43 expression
44 fs
45 individual single-wall carbon nanotubes
46 internal thermalization
47 metallic tubes
48 nanotube ropes
49 nanotubes
50 photo-excited carriers
51 photoemission
52 region
53 rope
54 scattering
55 semi-empirical expression
56 single-wall carbon
57 single-wall carbon nanotubes
58 spectroscopy
59 structure
60 system
61 technique
62 thermalization
63 time
64 time-resolved PL
65 time-resolved photoemission
66 transition energies
67 tube
68 schema:name Electronic structure and dynamics of optically excited single-wall carbon nanotubes
69 schema:pagination 1137-1145
70 schema:productId N0abd07c229914512b4e19d094431eb55
71 Nd2fb595ed9f840848a6506f95534cec9
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027913434
73 https://doi.org/10.1007/s00339-003-2465-1
74 schema:sdDatePublished 2022-05-20T07:22
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N98840d59c4b649639729600991cb2002
77 schema:url https://doi.org/10.1007/s00339-003-2465-1
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N0abd07c229914512b4e19d094431eb55 schema:name dimensions_id
82 schema:value pub.1027913434
83 rdf:type schema:PropertyValue
84 N167559a031264f48a7a348103e131b18 schema:issueNumber 8
85 rdf:type schema:PublicationIssue
86 N3456963707cb4a67927f2bbb63902332 rdf:first sg:person.0615207126.40
87 rdf:rest Nc66647f1e8084c48a92819c556a8bbe0
88 N8e29f53804e34133baec7b6d73e0a016 rdf:first sg:person.01352512064.89
89 rdf:rest N3456963707cb4a67927f2bbb63902332
90 N98840d59c4b649639729600991cb2002 schema:name Springer Nature - SN SciGraph project
91 rdf:type schema:Organization
92 Nafbc1f0245364748adf9e8d947c6c52d rdf:first sg:person.0626214064.09
93 rdf:rest N8e29f53804e34133baec7b6d73e0a016
94 Nc49ca4ebe57842b4b91130b77a3cf1bd schema:volumeNumber 78
95 rdf:type schema:PublicationVolume
96 Nc66647f1e8084c48a92819c556a8bbe0 rdf:first sg:person.01061005060.28
97 rdf:rest rdf:nil
98 Nd2fb595ed9f840848a6506f95534cec9 schema:name doi
99 schema:value 10.1007/s00339-003-2465-1
100 rdf:type schema:PropertyValue
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
105 schema:name Condensed Matter Physics
106 rdf:type schema:DefinedTerm
107 anzsrc-for:0205 schema:inDefinedTermSet anzsrc-for:
108 schema:name Optical Physics
109 rdf:type schema:DefinedTerm
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
114 schema:name Materials Engineering
115 rdf:type schema:DefinedTerm
116 sg:journal.1022207 schema:issn 0947-8396
117 1432-0630
118 schema:name Applied Physics A
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.01061005060.28 schema:affiliation grid-institutes:grid.152326.1
122 schema:familyName Hertel
123 schema:givenName T.
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01061005060.28
125 rdf:type schema:Person
126 sg:person.01352512064.89 schema:affiliation grid-institutes:grid.4372.2
127 schema:familyName Moos
128 schema:givenName G.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01352512064.89
130 rdf:type schema:Person
131 sg:person.0615207126.40 schema:affiliation grid-institutes:grid.419569.6
132 schema:familyName Talalaev
133 schema:givenName V.
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615207126.40
135 rdf:type schema:Person
136 sg:person.0626214064.09 schema:affiliation grid-institutes:grid.4372.2
137 schema:familyName Hagen
138 schema:givenName A.
139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0626214064.09
140 rdf:type schema:Person
141 sg:pub.10.1007/s003390201415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029129905
142 https://doi.org/10.1007/s003390201415
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/34139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050628739
145 https://doi.org/10.1038/34139
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/34145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022721610
148 https://doi.org/10.1038/34145
149 rdf:type schema:CreativeWork
150 sg:pub.10.1140/epjb/e2002-00224-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032635516
151 https://doi.org/10.1140/epjb/e2002-00224-8
152 rdf:type schema:CreativeWork
153 grid-institutes:grid.152326.1 schema:alternateName Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
154 schema:name Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4–6, 14195, Berlin, Germany
155 Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
156 rdf:type schema:Organization
157 grid-institutes:grid.419569.6 schema:alternateName Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2 A, 12489, Berlin, Germany
158 schema:name Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie, Max Born Str. 2 A, 12489, Berlin, Germany
159 rdf:type schema:Organization
160 grid-institutes:grid.4372.2 schema:alternateName Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4–6, 14195, Berlin, Germany
161 schema:name Department of Physical Chemistry, Fritz-Haber-Institut der Max-Planck-Society, Faradayweg 4–6, 14195, Berlin, Germany
162 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...