Copper nanoparticles encapsulated in multi-shell carbon cages View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-01-01

AUTHORS

A.K. Schaper, H. Hou, A. Greiner, R. Schneider, F. Phillipp

ABSTRACT

Nanoparticles are attracting increasing interest because of their high potential for a great number of practical applications, such as optical and electronic devices, nanoscale storage, and delivery systems. Using Cu-phthalocyanine as precursor material, we have synthesized multi-shell graphitic carbon nanospheres without and with metal encapsulation, depending on the pyrolysis conditions. The encapsulated elemental copper nanocrystals achieved using that route were of the order of 50 nm in size. The particles were characterized in detail by high-resolution transmission electron microscopy (HRTEM) and by energy filtering microscopy (EFTEM). The concentric graphitic carbon shells of the as-grown particles were clearly discernable. After in situ high-temperature annealing, an increase in the degree of order was observed. Under high-voltage electron irradiation and heating, a melting point reduction of the enclosed nanosized copper of more than 200 K could be detected, as compared to the melting point 1083 °C of bulk copper. Time-resolved imaging revealed the displacement of the melting copper by migration through the carbon shells, leaving intact carbon cages with a central hole. At intermediate stages of this process the transformation into a hexagonal morphology of the copper nanocrystals was observed. More... »

PAGES

73-77

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00339-003-2199-0

DOI

http://dx.doi.org/10.1007/s00339-003-2199-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010599792


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Material Sciences Center and Department of Geosciences, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Material Sciences Center and Department of Geosciences, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schaper", 
        "givenName": "A.K.", 
        "id": "sg:person.01340137622.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340137622.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Akron, Ohio, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Material Sciences Center and Department of Chemistry, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany", 
            "University of Akron, Ohio, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hou", 
        "givenName": "H.", 
        "id": "sg:person.0721366323.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721366323.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Material Sciences Center and Department of Chemistry, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10253.35", 
          "name": [
            "Material Sciences Center and Department of Chemistry, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Greiner", 
        "givenName": "A.", 
        "id": "sg:person.0771143361.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771143361.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Physics, Humboldt University, Invalidenstr. 110, 10115, Berlin, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7468.d", 
          "name": [
            "Institute of Physics, Humboldt University, Invalidenstr. 110, 10115, Berlin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schneider", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Metal Research, Heisenbergstr. 3, 70569, Stuttgart, Germany", 
          "id": "http://www.grid.ac/institutes/grid.4372.2", 
          "name": [
            "Max Planck Institute for Metal Research, Heisenbergstr. 3, 70569, Stuttgart, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Phillipp", 
        "givenName": "F.", 
        "id": "sg:person.01300520571.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300520571.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/372761a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021048983", 
          "https://doi.org/10.1038/372761a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/382433a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023879291", 
          "https://doi.org/10.1038/382433a0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-01-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "Nanoparticles are attracting increasing interest because of their high potential for a great number of practical applications, such as optical and electronic devices, nanoscale storage, and delivery systems. Using Cu-phthalocyanine as precursor material, we have synthesized multi-shell graphitic carbon nanospheres without and with metal encapsulation, depending on the pyrolysis conditions. The encapsulated elemental copper nanocrystals achieved using that route were of the order of 50\u00a0nm in size. The particles were characterized in detail by high-resolution transmission electron microscopy (HRTEM) and by energy filtering microscopy (EFTEM). The concentric graphitic carbon shells of the as-grown particles were clearly discernable. After in situ high-temperature annealing, an increase in the degree of order was observed. Under high-voltage electron irradiation and heating, a melting point reduction of the enclosed nanosized copper of more than 200\u00a0K could be detected, as compared to the melting point 1083\u00a0\u00b0C of bulk copper. Time-resolved imaging revealed the displacement of the melting copper by migration through the carbon shells, leaving intact carbon cages with a central hole. At intermediate stages of this process the transformation into a hexagonal morphology of the copper nanocrystals was observed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00339-003-2199-0", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1022207", 
        "issn": [
          "0947-8396", 
          "1432-0630"
        ], 
        "name": "Applied Physics A", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "keywords": [
      "high-resolution transmission electron microscopy", 
      "high-voltage electron irradiation", 
      "carbon shell", 
      "high-temperature annealing", 
      "transmission electron microscopy", 
      "graphitic carbon shells", 
      "copper nanocrystals", 
      "melting point reduction", 
      "electronic devices", 
      "precursor material", 
      "bulk copper", 
      "copper nanoparticles", 
      "pyrolysis conditions", 
      "graphitic carbon", 
      "nanoparticles", 
      "electron microscopy", 
      "metal encapsulation", 
      "delivery system", 
      "practical applications", 
      "central hole", 
      "high potential", 
      "hexagonal morphology", 
      "electron irradiation", 
      "nanocrystals", 
      "particles", 
      "degree of order", 
      "time-resolved imaging", 
      "copper", 
      "shell", 
      "microscopy", 
      "annealing", 
      "heating", 
      "devices", 
      "materials", 
      "carbon cage", 
      "displacement", 
      "encapsulation", 
      "order", 
      "applications", 
      "morphology", 
      "carbon", 
      "storage", 
      "holes", 
      "intermediate stage", 
      "route", 
      "process", 
      "conditions", 
      "size", 
      "system", 
      "irradiation", 
      "detail", 
      "point reduction", 
      "reduction", 
      "potential", 
      "increase", 
      "transformation", 
      "interest", 
      "degree", 
      "number", 
      "imaging", 
      "stage", 
      "cages", 
      "greater number", 
      "migration", 
      "nanoscale storage", 
      "multi-shell graphitic carbon", 
      "encapsulated elemental copper nanocrystals", 
      "elemental copper nanocrystals", 
      "energy filtering microscopy", 
      "filtering microscopy", 
      "concentric graphitic carbon shells", 
      "melting point 1083", 
      "point 1083", 
      "melting copper", 
      "intact carbon cages", 
      "multi-shell carbon cages"
    ], 
    "name": "Copper nanoparticles encapsulated in multi-shell carbon cages", 
    "pagination": "73-77", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010599792"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00339-003-2199-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00339-003-2199-0", 
      "https://app.dimensions.ai/details/publication/pub.1010599792"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_390.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00339-003-2199-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2199-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2199-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2199-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00339-003-2199-0'


 

This table displays all metadata directly associated to this object as RDF triples.

181 TRIPLES      22 PREDICATES      103 URIs      93 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00339-003-2199-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N53a1c8818c744a5caa443e2bd935eb35
4 schema:citation sg:pub.10.1038/372761a0
5 sg:pub.10.1038/382433a0
6 schema:datePublished 2004-01-01
7 schema:datePublishedReg 2004-01-01
8 schema:description Nanoparticles are attracting increasing interest because of their high potential for a great number of practical applications, such as optical and electronic devices, nanoscale storage, and delivery systems. Using Cu-phthalocyanine as precursor material, we have synthesized multi-shell graphitic carbon nanospheres without and with metal encapsulation, depending on the pyrolysis conditions. The encapsulated elemental copper nanocrystals achieved using that route were of the order of 50 nm in size. The particles were characterized in detail by high-resolution transmission electron microscopy (HRTEM) and by energy filtering microscopy (EFTEM). The concentric graphitic carbon shells of the as-grown particles were clearly discernable. After in situ high-temperature annealing, an increase in the degree of order was observed. Under high-voltage electron irradiation and heating, a melting point reduction of the enclosed nanosized copper of more than 200 K could be detected, as compared to the melting point 1083 °C of bulk copper. Time-resolved imaging revealed the displacement of the melting copper by migration through the carbon shells, leaving intact carbon cages with a central hole. At intermediate stages of this process the transformation into a hexagonal morphology of the copper nanocrystals was observed.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N65ea2b03366640e29e47d884360831b3
13 Nadde7f6159c348a1aa63c712ba936fd8
14 sg:journal.1022207
15 schema:keywords annealing
16 applications
17 bulk copper
18 cages
19 carbon
20 carbon cage
21 carbon shell
22 central hole
23 concentric graphitic carbon shells
24 conditions
25 copper
26 copper nanocrystals
27 copper nanoparticles
28 degree
29 degree of order
30 delivery system
31 detail
32 devices
33 displacement
34 electron irradiation
35 electron microscopy
36 electronic devices
37 elemental copper nanocrystals
38 encapsulated elemental copper nanocrystals
39 encapsulation
40 energy filtering microscopy
41 filtering microscopy
42 graphitic carbon
43 graphitic carbon shells
44 greater number
45 heating
46 hexagonal morphology
47 high potential
48 high-resolution transmission electron microscopy
49 high-temperature annealing
50 high-voltage electron irradiation
51 holes
52 imaging
53 increase
54 intact carbon cages
55 interest
56 intermediate stage
57 irradiation
58 materials
59 melting copper
60 melting point 1083
61 melting point reduction
62 metal encapsulation
63 microscopy
64 migration
65 morphology
66 multi-shell carbon cages
67 multi-shell graphitic carbon
68 nanocrystals
69 nanoparticles
70 nanoscale storage
71 number
72 order
73 particles
74 point 1083
75 point reduction
76 potential
77 practical applications
78 precursor material
79 process
80 pyrolysis conditions
81 reduction
82 route
83 shell
84 size
85 stage
86 storage
87 system
88 time-resolved imaging
89 transformation
90 transmission electron microscopy
91 schema:name Copper nanoparticles encapsulated in multi-shell carbon cages
92 schema:pagination 73-77
93 schema:productId N36ef4722b15248e8b5064c3ea236805e
94 N997a99e9e57447ad843d0e562e94a98c
95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010599792
96 https://doi.org/10.1007/s00339-003-2199-0
97 schema:sdDatePublished 2022-01-01T18:13
98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
99 schema:sdPublisher Nc545aa9972304a2f8f2bfaf59eb560e9
100 schema:url https://doi.org/10.1007/s00339-003-2199-0
101 sgo:license sg:explorer/license/
102 sgo:sdDataset articles
103 rdf:type schema:ScholarlyArticle
104 N36ef4722b15248e8b5064c3ea236805e schema:name dimensions_id
105 schema:value pub.1010599792
106 rdf:type schema:PropertyValue
107 N53a1c8818c744a5caa443e2bd935eb35 rdf:first sg:person.01340137622.25
108 rdf:rest Nf3d506f328744ffba89f81a9460c7300
109 N65ea2b03366640e29e47d884360831b3 schema:volumeNumber 78
110 rdf:type schema:PublicationVolume
111 N8915159f4df64c3eaa8be8e811e5101f rdf:first sg:person.01300520571.48
112 rdf:rest rdf:nil
113 N997a99e9e57447ad843d0e562e94a98c schema:name doi
114 schema:value 10.1007/s00339-003-2199-0
115 rdf:type schema:PropertyValue
116 Nadde7f6159c348a1aa63c712ba936fd8 schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 Nba7ccaa501274ae19ffc1ca2dfa73ee5 schema:affiliation grid-institutes:grid.7468.d
119 schema:familyName Schneider
120 schema:givenName R.
121 rdf:type schema:Person
122 Nc545aa9972304a2f8f2bfaf59eb560e9 schema:name Springer Nature - SN SciGraph project
123 rdf:type schema:Organization
124 Ndc728394a14b4a309c0c6562b863a56b rdf:first Nba7ccaa501274ae19ffc1ca2dfa73ee5
125 rdf:rest N8915159f4df64c3eaa8be8e811e5101f
126 Ne64e3a1948684787b50bac6ae7ef40d7 rdf:first sg:person.0771143361.93
127 rdf:rest Ndc728394a14b4a309c0c6562b863a56b
128 Nf3d506f328744ffba89f81a9460c7300 rdf:first sg:person.0721366323.05
129 rdf:rest Ne64e3a1948684787b50bac6ae7ef40d7
130 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
131 schema:name Engineering
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
134 schema:name Materials Engineering
135 rdf:type schema:DefinedTerm
136 sg:journal.1022207 schema:issn 0947-8396
137 1432-0630
138 schema:name Applied Physics A
139 schema:publisher Springer Nature
140 rdf:type schema:Periodical
141 sg:person.01300520571.48 schema:affiliation grid-institutes:grid.4372.2
142 schema:familyName Phillipp
143 schema:givenName F.
144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300520571.48
145 rdf:type schema:Person
146 sg:person.01340137622.25 schema:affiliation grid-institutes:grid.10253.35
147 schema:familyName Schaper
148 schema:givenName A.K.
149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340137622.25
150 rdf:type schema:Person
151 sg:person.0721366323.05 schema:affiliation grid-institutes:grid.265881.0
152 schema:familyName Hou
153 schema:givenName H.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0721366323.05
155 rdf:type schema:Person
156 sg:person.0771143361.93 schema:affiliation grid-institutes:grid.10253.35
157 schema:familyName Greiner
158 schema:givenName A.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771143361.93
160 rdf:type schema:Person
161 sg:pub.10.1038/372761a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021048983
162 https://doi.org/10.1038/372761a0
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/382433a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023879291
165 https://doi.org/10.1038/382433a0
166 rdf:type schema:CreativeWork
167 grid-institutes:grid.10253.35 schema:alternateName Material Sciences Center and Department of Chemistry, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany
168 Material Sciences Center and Department of Geosciences, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany
169 schema:name Material Sciences Center and Department of Chemistry, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany
170 Material Sciences Center and Department of Geosciences, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany
171 rdf:type schema:Organization
172 grid-institutes:grid.265881.0 schema:alternateName University of Akron, Ohio, USA
173 schema:name Material Sciences Center and Department of Chemistry, Philipps University, Hans-Meerwein-Str., 35032, Marburg, Germany
174 University of Akron, Ohio, USA
175 rdf:type schema:Organization
176 grid-institutes:grid.4372.2 schema:alternateName Max Planck Institute for Metal Research, Heisenbergstr. 3, 70569, Stuttgart, Germany
177 schema:name Max Planck Institute for Metal Research, Heisenbergstr. 3, 70569, Stuttgart, Germany
178 rdf:type schema:Organization
179 grid-institutes:grid.7468.d schema:alternateName Institute of Physics, Humboldt University, Invalidenstr. 110, 10115, Berlin, Germany
180 schema:name Institute of Physics, Humboldt University, Invalidenstr. 110, 10115, Berlin, Germany
181 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...