Calculating the Symmetry Number of Flexible Sphere Clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-22

AUTHORS

Emilio Zappa, Miranda Holmes-Cerfon

ABSTRACT

We present a theoretical and computational framework to compute the symmetry number of a flexible sphere cluster in R3, using a definition of symmetry that arises naturally when calculating the equilibrium probability of a cluster of spheres in the sticky-sphere limit. We define the sticky symmetry group of the cluster as the set of permutations and inversions of the spheres which preserve adjacency and can be realized by continuous deformations of the cluster that do not change the set of contacts or cause particles to overlap. The symmetry number is the size of the sticky symmetry group. We introduce a numerical algorithm to compute the sticky symmetry group and symmetry number, and show it works well on several test cases. Furthermore, we show that once the sticky symmetry group has been calculated for indistinguishable spheres, the symmetry group for partially distinguishable spheres (those with nonidentical interactions) can be efficiently obtained without repeating the laborious parts of the computations. We use our algorithm to calculate the partition functions of every possible connected cluster of six identical sticky spheres, generating data that may be used to design interactions between spheres so they self-assemble into a desired structure. More... »

PAGES

1-33

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00332-019-09537-4

DOI

http://dx.doi.org/10.1007/s00332-019-09537-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112305150


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fordham University", 
          "id": "https://www.grid.ac/institutes/grid.256023.0", 
          "name": [
            "Mathematics Department, Fordham University, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zappa", 
        "givenName": "Emilio", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Courant Institute of Mathematical Sciences, New York University, New York City, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holmes-Cerfon", 
        "givenName": "Miranda", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.1411765111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001228215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.228301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001993444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.114.228301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001993444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976.2014.904051", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002109563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0599-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013047198", 
          "https://doi.org/10.1007/978-1-4612-0599-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-0599-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013047198", 
          "https://doi.org/10.1007/978-1-4612-0599-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8253", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013975083", 
          "https://doi.org/10.1038/ncomms8253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1211720110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015026148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-030212-184213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016076181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1319599111", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021489616"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1014094108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022448042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.011303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026042723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.85.011303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026042723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(94)01382-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027530839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/natrevmats.2016.8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028018313", 
          "https://doi.org/10.1038/natrevmats.2016.8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsc.2013.09.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028077309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5sm01014d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028261122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-conmatphys-031016-025357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029646925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.physchem.53.082301.113146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030435738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1978-0511410-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040651802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268976300100501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042210487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/sym8010005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049390052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02287916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050089135", 
          "https://doi.org/10.1007/bf02287916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02287916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050089135", 
          "https://doi.org/10.1007/bf02287916"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1181263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053146474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci0341868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci0341868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci049966a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci049966a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055401980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci990322q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ci990322q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055405736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp110434s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp110434s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056080438"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.94.031301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060750393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.94.031301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060750393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.118303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.103.118303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060756001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2015.2398954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061424281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.2174962", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062250452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1253751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062469977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140982337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.022130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.95.022130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083935549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/psapm/066/2508727", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089195768"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1887/0750305045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099106652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.21783", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106223959"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-22", 
    "datePublishedReg": "2019-02-22", 
    "description": "We present a theoretical and computational framework to compute the symmetry number of a flexible sphere cluster in R3, using a definition of symmetry that arises naturally when calculating the equilibrium probability of a cluster of spheres in the sticky-sphere limit. We define the sticky symmetry group of the cluster as the set of permutations and inversions of the spheres which preserve adjacency and can be realized by continuous deformations of the cluster that do not change the set of contacts or cause particles to overlap. The symmetry number is the size of the sticky symmetry group. We introduce a numerical algorithm to compute the sticky symmetry group and symmetry number, and show it works well on several test cases. Furthermore, we show that once the sticky symmetry group has been calculated for indistinguishable spheres, the symmetry group for partially distinguishable spheres (those with nonidentical interactions) can be efficiently obtained without repeating the laborious parts of the computations. We use our algorithm to calculate the partition functions of every possible connected cluster of six identical sticky spheres, generating data that may be used to design interactions between spheres so they self-assemble into a desired structure.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00332-019-09537-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.4321484", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136738", 
        "issn": [
          "0938-8974", 
          "1432-1467"
        ], 
        "name": "Journal of Nonlinear Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Calculating the Symmetry Number of Flexible Sphere Clusters", 
    "pagination": "1-33", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "494f089ad82c6385c8461b6535d2b8e8d398bacd7f6a608957408c4721f92fae"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00332-019-09537-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112305150"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00332-019-09537-4", 
      "https://app.dimensions.ai/details/publication/pub.1112305150"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99803_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00332-019-09537-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00332-019-09537-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00332-019-09537-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00332-019-09537-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00332-019-09537-4'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      59 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00332-019-09537-4 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N5ac9c1e230494ce7ac49cd35f0f19423
4 schema:citation sg:pub.10.1007/978-1-4612-0599-9
5 sg:pub.10.1007/bf02287916
6 sg:pub.10.1038/natrevmats.2016.8
7 sg:pub.10.1038/ncomms8253
8 https://doi.org/10.1002/cpa.21783
9 https://doi.org/10.1016/0009-2614(94)01382-6
10 https://doi.org/10.1016/j.jsc.2013.09.003
11 https://doi.org/10.1021/ci0341868
12 https://doi.org/10.1021/ci049966a
13 https://doi.org/10.1021/ci990322q
14 https://doi.org/10.1021/jp110434s
15 https://doi.org/10.1039/c5sm01014d
16 https://doi.org/10.1073/pnas.1014094108
17 https://doi.org/10.1073/pnas.1211720110
18 https://doi.org/10.1073/pnas.1319599111
19 https://doi.org/10.1073/pnas.1411765111
20 https://doi.org/10.1080/00268976.2014.904051
21 https://doi.org/10.1080/00268976300100501
22 https://doi.org/10.1090/psapm/066/2508727
23 https://doi.org/10.1090/s0002-9947-1978-0511410-9
24 https://doi.org/10.1103/physreve.85.011303
25 https://doi.org/10.1103/physreve.94.031301
26 https://doi.org/10.1103/physreve.95.022130
27 https://doi.org/10.1103/physrevlett.103.118303
28 https://doi.org/10.1103/physrevlett.114.228301
29 https://doi.org/10.1109/msp.2015.2398954
30 https://doi.org/10.1119/1.2174962
31 https://doi.org/10.1126/science.1181263
32 https://doi.org/10.1126/science.1253751
33 https://doi.org/10.1137/140982337
34 https://doi.org/10.1146/annurev-conmatphys-030212-184213
35 https://doi.org/10.1146/annurev-conmatphys-031016-025357
36 https://doi.org/10.1146/annurev.physchem.53.082301.113146
37 https://doi.org/10.1887/0750305045
38 https://doi.org/10.3390/sym8010005
39 schema:datePublished 2019-02-22
40 schema:datePublishedReg 2019-02-22
41 schema:description We present a theoretical and computational framework to compute the symmetry number of a flexible sphere cluster in R3, using a definition of symmetry that arises naturally when calculating the equilibrium probability of a cluster of spheres in the sticky-sphere limit. We define the sticky symmetry group of the cluster as the set of permutations and inversions of the spheres which preserve adjacency and can be realized by continuous deformations of the cluster that do not change the set of contacts or cause particles to overlap. The symmetry number is the size of the sticky symmetry group. We introduce a numerical algorithm to compute the sticky symmetry group and symmetry number, and show it works well on several test cases. Furthermore, we show that once the sticky symmetry group has been calculated for indistinguishable spheres, the symmetry group for partially distinguishable spheres (those with nonidentical interactions) can be efficiently obtained without repeating the laborious parts of the computations. We use our algorithm to calculate the partition functions of every possible connected cluster of six identical sticky spheres, generating data that may be used to design interactions between spheres so they self-assemble into a desired structure.
42 schema:genre research_article
43 schema:inLanguage en
44 schema:isAccessibleForFree false
45 schema:isPartOf sg:journal.1136738
46 schema:name Calculating the Symmetry Number of Flexible Sphere Clusters
47 schema:pagination 1-33
48 schema:productId N3a703cb8f433481cb619d24655610ead
49 N6133fc03450e42aaa01f29b3bfc71dcc
50 N7e7e5e5f13b64d539121f113fe580205
51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112305150
52 https://doi.org/10.1007/s00332-019-09537-4
53 schema:sdDatePublished 2019-04-11T09:31
54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
55 schema:sdPublisher N68d3391e95e2478598738ca8bb1f1265
56 schema:url https://link.springer.com/10.1007%2Fs00332-019-09537-4
57 sgo:license sg:explorer/license/
58 sgo:sdDataset articles
59 rdf:type schema:ScholarlyArticle
60 N3a703cb8f433481cb619d24655610ead schema:name readcube_id
61 schema:value 494f089ad82c6385c8461b6535d2b8e8d398bacd7f6a608957408c4721f92fae
62 rdf:type schema:PropertyValue
63 N476d6e632cc04fd4828b7a7fb165daa0 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
64 schema:familyName Holmes-Cerfon
65 schema:givenName Miranda
66 rdf:type schema:Person
67 N5ac9c1e230494ce7ac49cd35f0f19423 rdf:first Nca2e2c98fd6543dfb51d1e23e09f12dc
68 rdf:rest Na7a0616ca2884b95b0b7a06b347a335b
69 N6133fc03450e42aaa01f29b3bfc71dcc schema:name doi
70 schema:value 10.1007/s00332-019-09537-4
71 rdf:type schema:PropertyValue
72 N68d3391e95e2478598738ca8bb1f1265 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N7e7e5e5f13b64d539121f113fe580205 schema:name dimensions_id
75 schema:value pub.1112305150
76 rdf:type schema:PropertyValue
77 Na7a0616ca2884b95b0b7a06b347a335b rdf:first N476d6e632cc04fd4828b7a7fb165daa0
78 rdf:rest rdf:nil
79 Nca2e2c98fd6543dfb51d1e23e09f12dc schema:affiliation https://www.grid.ac/institutes/grid.256023.0
80 schema:familyName Zappa
81 schema:givenName Emilio
82 rdf:type schema:Person
83 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
84 schema:name Mathematical Sciences
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
87 schema:name Pure Mathematics
88 rdf:type schema:DefinedTerm
89 sg:grant.4321484 http://pending.schema.org/fundedItem sg:pub.10.1007/s00332-019-09537-4
90 rdf:type schema:MonetaryGrant
91 sg:journal.1136738 schema:issn 0938-8974
92 1432-1467
93 schema:name Journal of Nonlinear Science
94 rdf:type schema:Periodical
95 sg:pub.10.1007/978-1-4612-0599-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013047198
96 https://doi.org/10.1007/978-1-4612-0599-9
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02287916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050089135
99 https://doi.org/10.1007/bf02287916
100 rdf:type schema:CreativeWork
101 sg:pub.10.1038/natrevmats.2016.8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028018313
102 https://doi.org/10.1038/natrevmats.2016.8
103 rdf:type schema:CreativeWork
104 sg:pub.10.1038/ncomms8253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013975083
105 https://doi.org/10.1038/ncomms8253
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1002/cpa.21783 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106223959
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0009-2614(94)01382-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027530839
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.jsc.2013.09.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028077309
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/ci0341868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401695
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1021/ci049966a schema:sameAs https://app.dimensions.ai/details/publication/pub.1055401980
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ci990322q schema:sameAs https://app.dimensions.ai/details/publication/pub.1055405736
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1021/jp110434s schema:sameAs https://app.dimensions.ai/details/publication/pub.1056080438
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1039/c5sm01014d schema:sameAs https://app.dimensions.ai/details/publication/pub.1028261122
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1073/pnas.1014094108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022448042
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1073/pnas.1211720110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015026148
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1073/pnas.1319599111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021489616
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1073/pnas.1411765111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001228215
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1080/00268976.2014.904051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002109563
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1080/00268976300100501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042210487
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1090/psapm/066/2508727 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089195768
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1090/s0002-9947-1978-0511410-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040651802
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physreve.85.011303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026042723
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physreve.94.031301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060750393
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physreve.95.022130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083935549
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.103.118303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060756001
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1103/physrevlett.114.228301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001993444
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/msp.2015.2398954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061424281
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1119/1.2174962 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062250452
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1126/science.1181263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053146474
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1126/science.1253751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062469977
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1137/140982337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872675
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1146/annurev-conmatphys-030212-184213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016076181
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1146/annurev-conmatphys-031016-025357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029646925
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1146/annurev.physchem.53.082301.113146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030435738
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1887/0750305045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099106652
166 rdf:type schema:CreativeWork
167 https://doi.org/10.3390/sym8010005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049390052
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.256023.0 schema:alternateName Fordham University
170 schema:name Mathematics Department, Fordham University, Bronx, NY, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
173 schema:name Courant Institute of Mathematical Sciences, New York University, New York City, NY, USA
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...