Asymptotic Formulas for Extreme Statistics of Escape Times in 1, 2 and 3-Dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-04

AUTHORS

K. Basnayake, Z. Schuss, D. Holcman

ABSTRACT

The first of N identical independently distributed (i.i.d.) Brownian trajectories that arrives to a small target sets the time scale of activation, which in general is much faster than the arrival to the target of a single trajectory only. Analytical asymptotic expressions for the minimal time is notoriously difficult to compute in general geometries. We derive here asymptotic laws for the probability density function of the first and second arrival times of a large number N of i.i.d. Brownian trajectories to a small target in 1, 2 and 3-dimensions and study their range of validity by stochastic simulations. The results are applied to activation of biochemical pathways in cellular biology. More... »

PAGES

461-499

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00332-018-9493-7

DOI

http://dx.doi.org/10.1007/s00332-018-9493-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107038150


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "Applied Mathematics and Computational Biology, Ecole Normale Sup\u00e9rieure, 46 rue d\u2019Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basnayake", 
        "givenName": "K.", 
        "id": "sg:person.012354623133.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354623133.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tel Aviv University", 
          "id": "https://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Applied Mathematics, Tel-Aviv University, 69978, Tel Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schuss", 
        "givenName": "Z.", 
        "id": "sg:person.01160142376.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160142376.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u00c9cole Normale Sup\u00e9rieure", 
          "id": "https://www.grid.ac/institutes/grid.5607.4", 
          "name": [
            "Applied Mathematics and Computational Biology, Ecole Normale Sup\u00e9rieure, 46 rue d\u2019Ulm, 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Holcman", 
        "givenName": "D.", 
        "id": "sg:person.01026507314.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026507314.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/1751-8113/43/31/315001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005974192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/43/31/315001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005974192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4614-6675-8_179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007349161", 
          "https://doi.org/10.1007/978-1-4614-6675-8_179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1529/biophysj.103.035972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007785226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.052102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011446514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.052102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011446514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuron.2012.07.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014189496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1751-8113/41/15/155001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014306568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0593-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016333775", 
          "https://doi.org/10.1007/s10955-012-0593-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02174217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019694213", 
          "https://doi.org/10.1007/bf02174217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02174217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019694213", 
          "https://doi.org/10.1007/bf02174217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0025122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019817524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0706599104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020006440"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-005-8028-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021757753", 
          "https://doi.org/10.1007/s10955-005-8028-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-005-8028-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021757753", 
          "https://doi.org/10.1007/s10955-005-8028-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-004-5712-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024205982", 
          "https://doi.org/10.1007/s10955-004-5712-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/1742-5468/2014/06/p06019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043279737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1314030110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047103154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bpj.2011.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048877481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.041102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049748937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.041102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049748937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/45/454130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050482415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/22/45/454130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050482415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.031910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.72.031910", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060733491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/09077357x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062856770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/120898395", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062870092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036139903424928", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062874914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/jn.1999.82.1.450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074489325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789814590297_0013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1088758654"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The first of N identical independently distributed (i.i.d.) Brownian trajectories that arrives to a small target sets the time scale of activation, which in general is much faster than the arrival to the target of a single trajectory only. Analytical asymptotic expressions for the minimal time is notoriously difficult to compute in general geometries. We derive here asymptotic laws for the probability density function of the first and second arrival times of a large number N of i.i.d. Brownian trajectories to a small target in 1, 2 and 3-dimensions and study their range of validity by stochastic simulations. The results are applied to activation of biochemical pathways in cellular biology.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00332-018-9493-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136738", 
        "issn": [
          "0938-8974", 
          "1432-1467"
        ], 
        "name": "Journal of Nonlinear Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Asymptotic Formulas for Extreme Statistics of Escape Times in 1, 2 and 3-Dimensions", 
    "pagination": "461-499", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c13ae7f6ca68cfd3979be5da471a3d8b2382d0ba8366182d337bbd0a7f2a496a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00332-018-9493-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107038150"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00332-018-9493-7", 
      "https://app.dimensions.ai/details/publication/pub.1107038150"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:58", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71689_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00332-018-9493-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9493-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9493-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9493-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9493-7'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00332-018-9493-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Ned9c316292734a0baadb775486659c77
4 schema:citation sg:pub.10.1007/978-1-4614-6675-8_179
5 sg:pub.10.1007/bf02174217
6 sg:pub.10.1007/s10955-004-5712-8
7 sg:pub.10.1007/s10955-005-8028-4
8 sg:pub.10.1007/s10955-012-0593-8
9 https://doi.org/10.1016/j.bpj.2011.05.032
10 https://doi.org/10.1016/j.neuron.2012.07.029
11 https://doi.org/10.1073/pnas.0706599104
12 https://doi.org/10.1073/pnas.1314030110
13 https://doi.org/10.1088/0953-8984/22/45/454130
14 https://doi.org/10.1088/1742-5468/2014/06/p06019
15 https://doi.org/10.1088/1751-8113/41/15/155001
16 https://doi.org/10.1088/1751-8113/43/31/315001
17 https://doi.org/10.1103/physreve.64.052102
18 https://doi.org/10.1103/physreve.72.031910
19 https://doi.org/10.1103/physreve.72.041102
20 https://doi.org/10.1137/09077357x
21 https://doi.org/10.1137/120898395
22 https://doi.org/10.1137/s0036139903424928
23 https://doi.org/10.1142/9789814590297_0013
24 https://doi.org/10.1152/jn.1999.82.1.450
25 https://doi.org/10.1371/journal.pone.0025122
26 https://doi.org/10.1529/biophysj.103.035972
27 schema:datePublished 2019-04
28 schema:datePublishedReg 2019-04-01
29 schema:description The first of N identical independently distributed (i.i.d.) Brownian trajectories that arrives to a small target sets the time scale of activation, which in general is much faster than the arrival to the target of a single trajectory only. Analytical asymptotic expressions for the minimal time is notoriously difficult to compute in general geometries. We derive here asymptotic laws for the probability density function of the first and second arrival times of a large number N of i.i.d. Brownian trajectories to a small target in 1, 2 and 3-dimensions and study their range of validity by stochastic simulations. The results are applied to activation of biochemical pathways in cellular biology.
30 schema:genre research_article
31 schema:inLanguage en
32 schema:isAccessibleForFree true
33 schema:isPartOf N28a9d567730b4d1c88b8c5101f11d281
34 Ne3cbcd22a3964a31a6dcac0176c62dee
35 sg:journal.1136738
36 schema:name Asymptotic Formulas for Extreme Statistics of Escape Times in 1, 2 and 3-Dimensions
37 schema:pagination 461-499
38 schema:productId Ndc3056acb6284291ad7a2ecae740788f
39 Nfd2ae5ba03a24aeea1197201df4965be
40 Nfeb95c2a5c2e425e8bc42ddd25de549e
41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107038150
42 https://doi.org/10.1007/s00332-018-9493-7
43 schema:sdDatePublished 2019-04-11T12:58
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher Nfe7d9609ed1842ddaa27b3021787358c
46 schema:url https://link.springer.com/10.1007%2Fs00332-018-9493-7
47 sgo:license sg:explorer/license/
48 sgo:sdDataset articles
49 rdf:type schema:ScholarlyArticle
50 N28a9d567730b4d1c88b8c5101f11d281 schema:volumeNumber 29
51 rdf:type schema:PublicationVolume
52 Na84ad1751ef7466b9b23483ce6711217 rdf:first sg:person.01026507314.47
53 rdf:rest rdf:nil
54 Ndc3056acb6284291ad7a2ecae740788f schema:name readcube_id
55 schema:value c13ae7f6ca68cfd3979be5da471a3d8b2382d0ba8366182d337bbd0a7f2a496a
56 rdf:type schema:PropertyValue
57 Ndee15ac6beab4a519b9f29017dc0c47a rdf:first sg:person.01160142376.09
58 rdf:rest Na84ad1751ef7466b9b23483ce6711217
59 Ne3cbcd22a3964a31a6dcac0176c62dee schema:issueNumber 2
60 rdf:type schema:PublicationIssue
61 Ned9c316292734a0baadb775486659c77 rdf:first sg:person.012354623133.86
62 rdf:rest Ndee15ac6beab4a519b9f29017dc0c47a
63 Nfd2ae5ba03a24aeea1197201df4965be schema:name dimensions_id
64 schema:value pub.1107038150
65 rdf:type schema:PropertyValue
66 Nfe7d9609ed1842ddaa27b3021787358c schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 Nfeb95c2a5c2e425e8bc42ddd25de549e schema:name doi
69 schema:value 10.1007/s00332-018-9493-7
70 rdf:type schema:PropertyValue
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:journal.1136738 schema:issn 0938-8974
78 1432-1467
79 schema:name Journal of Nonlinear Science
80 rdf:type schema:Periodical
81 sg:person.01026507314.47 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
82 schema:familyName Holcman
83 schema:givenName D.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01026507314.47
85 rdf:type schema:Person
86 sg:person.01160142376.09 schema:affiliation https://www.grid.ac/institutes/grid.12136.37
87 schema:familyName Schuss
88 schema:givenName Z.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160142376.09
90 rdf:type schema:Person
91 sg:person.012354623133.86 schema:affiliation https://www.grid.ac/institutes/grid.5607.4
92 schema:familyName Basnayake
93 schema:givenName K.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012354623133.86
95 rdf:type schema:Person
96 sg:pub.10.1007/978-1-4614-6675-8_179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007349161
97 https://doi.org/10.1007/978-1-4614-6675-8_179
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/bf02174217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019694213
100 https://doi.org/10.1007/bf02174217
101 rdf:type schema:CreativeWork
102 sg:pub.10.1007/s10955-004-5712-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024205982
103 https://doi.org/10.1007/s10955-004-5712-8
104 rdf:type schema:CreativeWork
105 sg:pub.10.1007/s10955-005-8028-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021757753
106 https://doi.org/10.1007/s10955-005-8028-4
107 rdf:type schema:CreativeWork
108 sg:pub.10.1007/s10955-012-0593-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016333775
109 https://doi.org/10.1007/s10955-012-0593-8
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.bpj.2011.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048877481
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.neuron.2012.07.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014189496
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1073/pnas.0706599104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020006440
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.1314030110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047103154
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1088/0953-8984/22/45/454130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050482415
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1088/1742-5468/2014/06/p06019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043279737
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1088/1751-8113/41/15/155001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014306568
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1088/1751-8113/43/31/315001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005974192
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.64.052102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011446514
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.72.031910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060733491
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.72.041102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049748937
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1137/09077357x schema:sameAs https://app.dimensions.ai/details/publication/pub.1062856770
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1137/120898395 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062870092
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1137/s0036139903424928 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062874914
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1142/9789814590297_0013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1088758654
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1152/jn.1999.82.1.450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074489325
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1371/journal.pone.0025122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019817524
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1529/biophysj.103.035972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007785226
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.12136.37 schema:alternateName Tel Aviv University
148 schema:name Department of Applied Mathematics, Tel-Aviv University, 69978, Tel Aviv, Israel
149 rdf:type schema:Organization
150 https://www.grid.ac/institutes/grid.5607.4 schema:alternateName École Normale Supérieure
151 schema:name Applied Mathematics and Computational Biology, Ecole Normale Supérieure, 46 rue d’Ulm, 75005, Paris, France
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...