Go With the Flow, on Jupiter and Snow. Coherence from Model-Free Video Data Without Trajectories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-06-02

AUTHORS

Abd AlRahman R. AlMomani, Erik Bollt

ABSTRACT

Viewing a data set such as the clouds of Jupiter, coherence is readily apparent to human observers, especially the Great Red Spot, but also other great storms and persistent structures. There are now many different definitions and perspectives mathematically describing coherent structures, but we will take an image processing perspective here. We describe an image processing perspective inference of coherent sets from a fluidic system directly from image data, without attempting to first model underlying flow fields, related to a concept in image processing called motion tracking. In contrast to standard spectral methods for image processing which are generally related to a symmetric affinity matrix, leading to standard spectral graph theory, we need a not symmetric affinity which arises naturally from the underlying arrow of time. We develop an anisotropic, directed diffusion operator corresponding to flow on a directed graph, from a directed affinity matrix developed with coherence in mind, and corresponding spectral graph theory from the graph Laplacian. Our methodology is not offered as more accurate than other traditional methods of finding coherent sets, but rather our approach works with alternative kinds of data sets, in the absence of vector field. Our examples will include partitioning the weather and cloud structures of Jupiter, and a local to Potsdam, NY, lake effect snow event on Earth, as well as the benchmark test double-gyre system. More... »

PAGES

1-30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00332-018-9470-1

DOI

http://dx.doi.org/10.1007/s00332-018-9470-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104369301


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Clarkson Center for Complex Systems Science (C3S2), Clarkson University, Potsdam, USA", 
            "Department of Mathematics, Clarkson University, Potsdam, USA", 
            "Department of Electrical and Computer Engineering, Clarkson University, 13699, Potsdam, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "AlMomani", 
        "givenName": "Abd AlRahman R.", 
        "id": "sg:person.015532736046.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532736046.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Clarkson Center for Complex Systems Science (C3S2), Clarkson University, Potsdam, USA", 
            "Department of Mathematics, Clarkson University, Potsdam, USA", 
            "Department of Physics, Clarkson University, Potsdam, USA", 
            "Department of Electrical and Computer Engineering, Clarkson University, 13699, Potsdam, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bollt", 
        "givenName": "Erik", 
        "id": "sg:person.01166022736.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166022736.75"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00026-005-0237-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006181608", 
          "https://doi.org/10.1007/s00026-005-0237-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2012.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007739621"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2009.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009423144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/990308.990313", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010910661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4926372", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015010991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pamm.201110415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017596628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-015-9258-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018621275", 
          "https://doi.org/10.1007/s00332-015-9258-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3502450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021118815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2005.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026245878"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev-fluid-010313-141322", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027845482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4941256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029614999"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0061441", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030910282", 
          "https://doi.org/10.1007/bfb0061441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4922026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031254142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9947-1982-0664049-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032667312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0055696", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034163223", 
          "https://doi.org/10.1007/bfb0055696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2008.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034840622"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.1307298110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035795638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jocs.2014.12.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036623124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2007.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036735165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0040-9383(82)90023-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037738931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2006.04.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037919082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0951-7715/28/10/3587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039987895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2013.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040437877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0419-8_9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042170615", 
          "https://doi.org/10.1007/978-1-4939-0419-8_9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2010.03.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042181655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2012.08.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045658971"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1014052.1014118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046876949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0925-7721(00)00022-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047016119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4939-0419-8_4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050427395", 
          "https://doi.org/10.1007/978-1-4939-0419-8_4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2013.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053757660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/jfm.2013.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053757660"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112009992059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053959190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112009992059", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053959190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.166479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057742840"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4821188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058082480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/analys/54.3.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059388198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/analys/55.4.306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059388282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/analys/63.3.194", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059388708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bjps/54.4.613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059432559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/mind/112.448.601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059881048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.063005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.92.063005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060748765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.063107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.93.063107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060749953"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.64.795", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2007.70738", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/130940633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062871378"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/140983665", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062872705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127413300267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062956744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127415500765", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062957341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/98/44005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064234100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3836/tjm/1270128184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071448597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4971788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083876148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acha.2017.09.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091774119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/acc.2015.7170918", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093682834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sfcs.2000.892125", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095031351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611972641", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098553048"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06-02", 
    "datePublishedReg": "2018-06-02", 
    "description": "Viewing a data set such as the clouds of Jupiter, coherence is readily apparent to human observers, especially the Great Red Spot, but also other great storms and persistent structures. There are now many different definitions and perspectives mathematically describing coherent structures, but we will take an image processing perspective here. We describe an image processing perspective inference of coherent sets from a fluidic system directly from image data, without attempting to first model underlying flow fields, related to a concept in image processing called motion tracking. In contrast to standard spectral methods for image processing which are generally related to a symmetric affinity matrix, leading to standard spectral graph theory, we need a not symmetric affinity which arises naturally from the underlying arrow of time. We develop an anisotropic, directed diffusion operator corresponding to flow on a directed graph, from a directed affinity matrix developed with coherence in mind, and corresponding spectral graph theory from the graph Laplacian. Our methodology is not offered as more accurate than other traditional methods of finding coherent sets, but rather our approach works with alternative kinds of data sets, in the absence of vector field. Our examples will include partitioning the weather and cloud structures of Jupiter, and a local to Potsdam, NY, lake effect snow event on Earth, as well as the benchmark test double-gyre system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00332-018-9470-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136738", 
        "issn": [
          "0938-8974", 
          "1432-1467"
        ], 
        "name": "Journal of Nonlinear Science", 
        "type": "Periodical"
      }
    ], 
    "name": "Go With the Flow, on Jupiter and Snow. Coherence from Model-Free Video Data Without Trajectories", 
    "pagination": "1-30", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7958f03d4905abf0093d5c55ac8a43dfb50b15841e0cf3869d3dfa750b53a9da"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00332-018-9470-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104369301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00332-018-9470-1", 
      "https://app.dimensions.ai/details/publication/pub.1104369301"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89801_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00332-018-9470-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9470-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9470-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9470-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00332-018-9470-1'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      21 PREDICATES      78 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00332-018-9470-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nb2a18ef475604a62a266adfcdfa76dab
4 schema:citation sg:pub.10.1007/978-1-4939-0419-8_4
5 sg:pub.10.1007/978-1-4939-0419-8_9
6 sg:pub.10.1007/bfb0055696
7 sg:pub.10.1007/bfb0061441
8 sg:pub.10.1007/s00026-005-0237-z
9 sg:pub.10.1007/s00332-015-9258-5
10 https://doi.org/10.1002/pamm.201110415
11 https://doi.org/10.1016/0040-9383(82)90023-4
12 https://doi.org/10.1016/j.acha.2006.04.006
13 https://doi.org/10.1016/j.acha.2017.09.001
14 https://doi.org/10.1016/j.cviu.2008.11.005
15 https://doi.org/10.1016/j.jocs.2014.12.002
16 https://doi.org/10.1016/j.physd.2005.10.007
17 https://doi.org/10.1016/j.physd.2007.04.008
18 https://doi.org/10.1016/j.physd.2009.03.002
19 https://doi.org/10.1016/j.physd.2010.03.009
20 https://doi.org/10.1016/j.physd.2012.06.012
21 https://doi.org/10.1016/j.physd.2012.08.017
22 https://doi.org/10.1016/j.physd.2013.01.013
23 https://doi.org/10.1016/s0925-7721(00)00022-5
24 https://doi.org/10.1017/jfm.2013.249
25 https://doi.org/10.1017/s0022112009992059
26 https://doi.org/10.1063/1.166479
27 https://doi.org/10.1063/1.3502450
28 https://doi.org/10.1063/1.4821188
29 https://doi.org/10.1063/1.4922026
30 https://doi.org/10.1063/1.4926372
31 https://doi.org/10.1063/1.4941256
32 https://doi.org/10.1063/1.4971788
33 https://doi.org/10.1073/pnas.1307298110
34 https://doi.org/10.1088/0951-7715/28/10/3587
35 https://doi.org/10.1090/s0002-9947-1982-0664049-x
36 https://doi.org/10.1093/analys/54.3.129
37 https://doi.org/10.1093/analys/55.4.306
38 https://doi.org/10.1093/analys/63.3.194
39 https://doi.org/10.1093/bjps/54.4.613
40 https://doi.org/10.1093/mind/112.448.601
41 https://doi.org/10.1103/physreve.92.063005
42 https://doi.org/10.1103/physreve.93.063107
43 https://doi.org/10.1103/revmodphys.64.795
44 https://doi.org/10.1109/acc.2015.7170918
45 https://doi.org/10.1109/sfcs.2000.892125
46 https://doi.org/10.1109/tpami.2002.1017616
47 https://doi.org/10.1109/tpami.2007.70738
48 https://doi.org/10.1137/1.9781611972641
49 https://doi.org/10.1137/130940633
50 https://doi.org/10.1137/140983665
51 https://doi.org/10.1142/s0218127413300267
52 https://doi.org/10.1142/s0218127415500765
53 https://doi.org/10.1145/1014052.1014118
54 https://doi.org/10.1145/990308.990313
55 https://doi.org/10.1146/annurev-fluid-010313-141322
56 https://doi.org/10.1209/0295-5075/98/44005
57 https://doi.org/10.3836/tjm/1270128184
58 schema:datePublished 2018-06-02
59 schema:datePublishedReg 2018-06-02
60 schema:description Viewing a data set such as the clouds of Jupiter, coherence is readily apparent to human observers, especially the Great Red Spot, but also other great storms and persistent structures. There are now many different definitions and perspectives mathematically describing coherent structures, but we will take an image processing perspective here. We describe an image processing perspective inference of coherent sets from a fluidic system directly from image data, without attempting to first model underlying flow fields, related to a concept in image processing called motion tracking. In contrast to standard spectral methods for image processing which are generally related to a symmetric affinity matrix, leading to standard spectral graph theory, we need a not symmetric affinity which arises naturally from the underlying arrow of time. We develop an anisotropic, directed diffusion operator corresponding to flow on a directed graph, from a directed affinity matrix developed with coherence in mind, and corresponding spectral graph theory from the graph Laplacian. Our methodology is not offered as more accurate than other traditional methods of finding coherent sets, but rather our approach works with alternative kinds of data sets, in the absence of vector field. Our examples will include partitioning the weather and cloud structures of Jupiter, and a local to Potsdam, NY, lake effect snow event on Earth, as well as the benchmark test double-gyre system.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree true
64 schema:isPartOf sg:journal.1136738
65 schema:name Go With the Flow, on Jupiter and Snow. Coherence from Model-Free Video Data Without Trajectories
66 schema:pagination 1-30
67 schema:productId N107074a16c6749a4b944ae59159daa1b
68 N8b8c8b1c54504823918d84ae8560cadf
69 Nd325601ddcca4362b76e08ba8f7617d9
70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104369301
71 https://doi.org/10.1007/s00332-018-9470-1
72 schema:sdDatePublished 2019-04-11T09:55
73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
74 schema:sdPublisher Nf9878cbfb07447c4bc43b52e1e48de1a
75 schema:url https://link.springer.com/10.1007%2Fs00332-018-9470-1
76 sgo:license sg:explorer/license/
77 sgo:sdDataset articles
78 rdf:type schema:ScholarlyArticle
79 N107074a16c6749a4b944ae59159daa1b schema:name readcube_id
80 schema:value 7958f03d4905abf0093d5c55ac8a43dfb50b15841e0cf3869d3dfa750b53a9da
81 rdf:type schema:PropertyValue
82 N35ac5b7727d244819adcb0eac842cbdc rdf:first sg:person.01166022736.75
83 rdf:rest rdf:nil
84 N8b8c8b1c54504823918d84ae8560cadf schema:name dimensions_id
85 schema:value pub.1104369301
86 rdf:type schema:PropertyValue
87 Nb2a18ef475604a62a266adfcdfa76dab rdf:first sg:person.015532736046.01
88 rdf:rest N35ac5b7727d244819adcb0eac842cbdc
89 Nd325601ddcca4362b76e08ba8f7617d9 schema:name doi
90 schema:value 10.1007/s00332-018-9470-1
91 rdf:type schema:PropertyValue
92 Nf9878cbfb07447c4bc43b52e1e48de1a schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
95 schema:name Information and Computing Sciences
96 rdf:type schema:DefinedTerm
97 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
98 schema:name Artificial Intelligence and Image Processing
99 rdf:type schema:DefinedTerm
100 sg:journal.1136738 schema:issn 0938-8974
101 1432-1467
102 schema:name Journal of Nonlinear Science
103 rdf:type schema:Periodical
104 sg:person.01166022736.75 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
105 schema:familyName Bollt
106 schema:givenName Erik
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166022736.75
108 rdf:type schema:Person
109 sg:person.015532736046.01 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
110 schema:familyName AlMomani
111 schema:givenName Abd AlRahman R.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532736046.01
113 rdf:type schema:Person
114 sg:pub.10.1007/978-1-4939-0419-8_4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050427395
115 https://doi.org/10.1007/978-1-4939-0419-8_4
116 rdf:type schema:CreativeWork
117 sg:pub.10.1007/978-1-4939-0419-8_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042170615
118 https://doi.org/10.1007/978-1-4939-0419-8_9
119 rdf:type schema:CreativeWork
120 sg:pub.10.1007/bfb0055696 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034163223
121 https://doi.org/10.1007/bfb0055696
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bfb0061441 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030910282
124 https://doi.org/10.1007/bfb0061441
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s00026-005-0237-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1006181608
127 https://doi.org/10.1007/s00026-005-0237-z
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s00332-015-9258-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018621275
130 https://doi.org/10.1007/s00332-015-9258-5
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1002/pamm.201110415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017596628
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/0040-9383(82)90023-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037738931
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.acha.2006.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037919082
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.acha.2017.09.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091774119
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.cviu.2008.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034840622
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.jocs.2014.12.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036623124
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.physd.2005.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026245878
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.physd.2007.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036735165
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.physd.2009.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009423144
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.physd.2010.03.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042181655
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.physd.2012.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007739621
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.physd.2012.08.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045658971
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.physd.2013.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040437877
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/s0925-7721(00)00022-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047016119
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1017/jfm.2013.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053757660
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1017/s0022112009992059 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053959190
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1063/1.166479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057742840
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1063/1.3502450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021118815
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1063/1.4821188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058082480
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1063/1.4922026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031254142
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1063/1.4926372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015010991
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1063/1.4941256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029614999
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1063/1.4971788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083876148
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1073/pnas.1307298110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035795638
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1088/0951-7715/28/10/3587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039987895
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1090/s0002-9947-1982-0664049-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032667312
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/analys/54.3.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059388198
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/analys/55.4.306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059388282
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1093/analys/63.3.194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059388708
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1093/bjps/54.4.613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059432559
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1093/mind/112.448.601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059881048
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1103/physreve.92.063005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060748765
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1103/physreve.93.063107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060749953
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1103/revmodphys.64.795 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839265
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1109/acc.2015.7170918 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093682834
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1109/sfcs.2000.892125 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095031351
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1109/tpami.2002.1017616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742389
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1109/tpami.2007.70738 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743381
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1137/1.9781611972641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098553048
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1137/130940633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062871378
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1137/140983665 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062872705
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1142/s0218127413300267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062956744
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1142/s0218127415500765 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062957341
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1145/1014052.1014118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046876949
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1145/990308.990313 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010910661
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1146/annurev-fluid-010313-141322 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027845482
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1209/0295-5075/98/44005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064234100
225 rdf:type schema:CreativeWork
226 https://doi.org/10.3836/tjm/1270128184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071448597
227 rdf:type schema:CreativeWork
228 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
229 schema:name Clarkson Center for Complex Systems Science (C3S2), Clarkson University, Potsdam, USA
230 Department of Electrical and Computer Engineering, Clarkson University, 13699, Potsdam, NY, USA
231 Department of Mathematics, Clarkson University, Potsdam, USA
232 Department of Physics, Clarkson University, Potsdam, USA
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...