On Large Time Behavior and Selection Principle for a Diffusive Carr–Penrose Model View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-04

AUTHORS

Joseph G. Conlon, Michael Dabkowski, Jingchen Wu

ABSTRACT

This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model. More... »

PAGES

453-518

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00332-015-9280-7

DOI

http://dx.doi.org/10.1007/s00332-015-9280-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1012267753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, 48109-1109, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Conlon", 
        "givenName": "Joseph G.", 
        "id": "sg:person.01275345710.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Department of Mathematics, University of Michigan, 48109-1109, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dabkowski", 
        "givenName": "Michael", 
        "id": "sg:person.012306671521.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306671521.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "500 9th Avenue, 98109, Seattle, WA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jingchen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(61)90054-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000441444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-010-9065-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001387913", 
          "https://doi.org/10.1007/s00332-010-9065-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00332-010-9065-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001387913", 
          "https://doi.org/10.1007/s00332-010-9065-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1002482440", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5282-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482440", 
          "https://doi.org/10.1007/978-1-4612-5282-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5282-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002482440", 
          "https://doi.org/10.1007/978-1-4612-5282-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.3160030302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006837674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.3072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010905053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.3072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010905053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78214-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015295700", 
          "https://doi.org/10.1007/978-0-387-78214-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-0-387-78214-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015295700", 
          "https://doi.org/10.1007/978-0-387-78214-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1004546215920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015899141", 
          "https://doi.org/10.1023/a:1004546215920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023099720145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023694123", 
          "https://doi.org/10.1023/a:1023099720145"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bbpc.19610650704", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034744834"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(98)00188-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038170054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-008-9552-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040251431", 
          "https://doi.org/10.1007/s10955-008-9552-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physd.2006.07.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051326086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00205-011-0398-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052657862", 
          "https://doi.org/10.1007/s00205-011-0398-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.61.709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060725317"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4171/rmi/794", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072321131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9781611970562", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556235"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00332-015-9280-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136738", 
        "issn": [
          "0938-8974", 
          "1432-1467"
        ], 
        "name": "Journal of Nonlinear Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "On Large Time Behavior and Selection Principle for a Diffusive Carr\u2013Penrose Model", 
    "pagination": "453-518", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "3a7299f0923ae595ab50281745887ededcff2691fb1b8285798623c56a9bb222"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00332-015-9280-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1012267753"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00332-015-9280-7", 
      "https://app.dimensions.ai/details/publication/pub.1012267753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000511.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00332-015-9280-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00332-015-9280-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00332-015-9280-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00332-015-9280-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00332-015-9280-7'


 

This table displays all metadata directly associated to this object as RDF triples.

133 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00332-015-9280-7 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nc7f6aad73c364179a89837b764b510de
4 schema:citation sg:pub.10.1007/978-0-387-78214-0
5 sg:pub.10.1007/978-1-4612-5282-5
6 sg:pub.10.1007/s00205-011-0398-y
7 sg:pub.10.1007/s00332-010-9065-y
8 sg:pub.10.1007/s10955-008-9552-9
9 sg:pub.10.1023/a:1004546215920
10 sg:pub.10.1023/a:1023099720145
11 https://app.dimensions.ai/details/publication/pub.1002482440
12 https://doi.org/10.1002/bbpc.19610650704
13 https://doi.org/10.1002/cpa.3160030302
14 https://doi.org/10.1016/0022-3697(61)90054-3
15 https://doi.org/10.1016/j.physd.2006.07.026
16 https://doi.org/10.1016/s0167-2789(98)00188-2
17 https://doi.org/10.1103/physreve.60.3072
18 https://doi.org/10.1103/physreve.61.709
19 https://doi.org/10.1137/1.9781611970562
20 https://doi.org/10.4171/rmi/794
21 schema:datePublished 2016-04
22 schema:datePublishedReg 2016-04-01
23 schema:description This paper is concerned with the study of a diffusive perturbation of the linear LSW model introduced by Carr and Penrose. A main subject of interest is to understand how the presence of diffusion acts as a selection principle, which singles out a particular self-similar solution of the linear LSW model as determining the large time behavior of the diffusive model. A selection principle is rigorously proven for a model which is a semiclassical approximation to the diffusive model. Upper bounds on the rate of coarsening are also obtained for the full diffusive model.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree true
27 schema:isPartOf N425b7907c14347ea8d6c4853126ef992
28 Nc67b51743aa344f891ac38426c41b566
29 sg:journal.1136738
30 schema:name On Large Time Behavior and Selection Principle for a Diffusive Carr–Penrose Model
31 schema:pagination 453-518
32 schema:productId N82c3b19ff6df4f13a7046d2fa5daf9f4
33 N89fa20049ee64a6b88513ddd6644b50a
34 N9ebfc919af71482c84027be9949a4549
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012267753
36 https://doi.org/10.1007/s00332-015-9280-7
37 schema:sdDatePublished 2019-04-10T15:51
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N57d3fff1934d415ba95e2e4f5638482d
40 schema:url http://link.springer.com/10.1007%2Fs00332-015-9280-7
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N27bf9fd26136456d829f89b1c73420a3 rdf:first sg:person.012306671521.82
45 rdf:rest N60b8d4e7e76b4de39bfc58be34f570bc
46 N425b7907c14347ea8d6c4853126ef992 schema:issueNumber 2
47 rdf:type schema:PublicationIssue
48 N57d3fff1934d415ba95e2e4f5638482d schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N60b8d4e7e76b4de39bfc58be34f570bc rdf:first Na92becdd622e443ebdff8ba9fbc59f5a
51 rdf:rest rdf:nil
52 N82c3b19ff6df4f13a7046d2fa5daf9f4 schema:name readcube_id
53 schema:value 3a7299f0923ae595ab50281745887ededcff2691fb1b8285798623c56a9bb222
54 rdf:type schema:PropertyValue
55 N89fa20049ee64a6b88513ddd6644b50a schema:name dimensions_id
56 schema:value pub.1012267753
57 rdf:type schema:PropertyValue
58 N9ebfc919af71482c84027be9949a4549 schema:name doi
59 schema:value 10.1007/s00332-015-9280-7
60 rdf:type schema:PropertyValue
61 Na81fde4453f14398b700b82f8319d96a schema:name 500 9th Avenue, 98109, Seattle, WA, USA
62 rdf:type schema:Organization
63 Na92becdd622e443ebdff8ba9fbc59f5a schema:affiliation Na81fde4453f14398b700b82f8319d96a
64 schema:familyName Wu
65 schema:givenName Jingchen
66 rdf:type schema:Person
67 Nc67b51743aa344f891ac38426c41b566 schema:volumeNumber 26
68 rdf:type schema:PublicationVolume
69 Nc7f6aad73c364179a89837b764b510de rdf:first sg:person.01275345710.70
70 rdf:rest N27bf9fd26136456d829f89b1c73420a3
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
75 schema:name Statistics
76 rdf:type schema:DefinedTerm
77 sg:journal.1136738 schema:issn 0938-8974
78 1432-1467
79 schema:name Journal of Nonlinear Science
80 rdf:type schema:Periodical
81 sg:person.012306671521.82 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
82 schema:familyName Dabkowski
83 schema:givenName Michael
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012306671521.82
85 rdf:type schema:Person
86 sg:person.01275345710.70 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
87 schema:familyName Conlon
88 schema:givenName Joseph G.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01275345710.70
90 rdf:type schema:Person
91 sg:pub.10.1007/978-0-387-78214-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015295700
92 https://doi.org/10.1007/978-0-387-78214-0
93 rdf:type schema:CreativeWork
94 sg:pub.10.1007/978-1-4612-5282-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002482440
95 https://doi.org/10.1007/978-1-4612-5282-5
96 rdf:type schema:CreativeWork
97 sg:pub.10.1007/s00205-011-0398-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052657862
98 https://doi.org/10.1007/s00205-011-0398-y
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s00332-010-9065-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1001387913
101 https://doi.org/10.1007/s00332-010-9065-y
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s10955-008-9552-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040251431
104 https://doi.org/10.1007/s10955-008-9552-9
105 rdf:type schema:CreativeWork
106 sg:pub.10.1023/a:1004546215920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015899141
107 https://doi.org/10.1023/a:1004546215920
108 rdf:type schema:CreativeWork
109 sg:pub.10.1023/a:1023099720145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023694123
110 https://doi.org/10.1023/a:1023099720145
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1002482440 schema:CreativeWork
113 https://doi.org/10.1002/bbpc.19610650704 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034744834
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/cpa.3160030302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006837674
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0022-3697(61)90054-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000441444
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.physd.2006.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051326086
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0167-2789(98)00188-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038170054
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreve.60.3072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010905053
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreve.61.709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060725317
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1137/1.9781611970562 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556235
128 rdf:type schema:CreativeWork
129 https://doi.org/10.4171/rmi/794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072321131
130 rdf:type schema:CreativeWork
131 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
132 schema:name Department of Mathematics, University of Michigan, 48109-1109, Ann Arbor, MI, USA
133 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...