Bounds on Surface Stress-Driven Shear Flow View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-02

AUTHORS

George I. Hagstrom, Charles R. Doering

ABSTRACT

The background method is adapted to derive rigorous limits on surface speeds and bulk energy dissipation for shear stress-driven flow in two- and three-dimensional channels. By-products of the analysis are nonlinear energy stability results for plane Couette flow with a shear stress boundary condition: when the applied stress is gauged by a dimensionless Grashoff number , the critical for energy stability is 139.5 in two dimensions, and 51.73 in three dimensions. We derive upper bounds on the friction (a.k.a. dissipation) coefficient , where τ is the applied shear stress and is the mean velocity of the fluid at the surface, for flows at higher including developed turbulence: Cf≤1/32 in two dimensions and Cf≤1/8 in three dimensions. This analysis rigorously justifies previously computed numerical estimates. More... »

PAGES

185-199

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00332-013-9183-4

DOI

http://dx.doi.org/10.1007/s00332-013-9183-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047373442


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Courant Institute of Mathematical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.482020.c", 
          "name": [
            "Magneto-Fluids Division, Courant Institute of Mathematical Sciences, New York University, 10012-1185, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hagstrom", 
        "givenName": "George I.", 
        "id": "sg:person.010603662241.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010603662241.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Michigan\u2013Ann Arbor", 
          "id": "https://www.grid.ac/institutes/grid.214458.e", 
          "name": [
            "Departments of Physics and Mathematics, and Center of the Study of Complex Systems, University of Michigan, 48109-1034, Ann Arbor, MI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Doering", 
        "givenName": "Charles R.", 
        "id": "sg:person.01161117310.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.106.244501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000886420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.106.244501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000886420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112010003897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053906187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112010003897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053906187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112002002410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053968966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112004009589", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053988518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0022112006000097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053988841"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716489"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.5957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.53.5957", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060719390"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.047301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.81.047301", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060740456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805286"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "The background method is adapted to derive rigorous limits on surface speeds and bulk energy dissipation for shear stress-driven flow in two- and three-dimensional channels. By-products of the analysis are nonlinear energy stability results for plane Couette flow with a shear stress boundary condition: when the applied stress is gauged by a dimensionless Grashoff number , the critical for energy stability is 139.5 in two dimensions, and 51.73 in three dimensions. We derive upper bounds on the friction (a.k.a. dissipation) coefficient , where \u03c4 is the applied shear stress and is the mean velocity of the fluid at the surface, for flows at higher including developed turbulence: Cf\u22641/32 in two dimensions and Cf\u22641/8 in three dimensions. This analysis rigorously justifies previously computed numerical estimates.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00332-013-9183-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3065512", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.4320863", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3098156", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.3001816", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136738", 
        "issn": [
          "0938-8974", 
          "1432-1467"
        ], 
        "name": "Journal of Nonlinear Science", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Bounds on Surface Stress-Driven Shear Flow", 
    "pagination": "185-199", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e1ac28a1163d68e8b1ea64d8362a806b1c3dd788bb976b2d2b27c78cd2619947"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00332-013-9183-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047373442"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00332-013-9183-4", 
      "https://app.dimensions.ai/details/publication/pub.1047373442"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000515.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs00332-013-9183-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9183-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9183-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9183-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9183-4'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00332-013-9183-4 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author Nd0df4e9f64e842e0af8ad54fb2ac29a9
4 schema:citation https://doi.org/10.1017/s0022112002002410
5 https://doi.org/10.1017/s0022112004009589
6 https://doi.org/10.1017/s0022112006000097
7 https://doi.org/10.1017/s0022112010003897
8 https://doi.org/10.1103/physreve.49.4087
9 https://doi.org/10.1103/physreve.53.5957
10 https://doi.org/10.1103/physreve.81.047301
11 https://doi.org/10.1103/physrevlett.106.244501
12 https://doi.org/10.1103/physrevlett.69.1648
13 schema:datePublished 2014-02
14 schema:datePublishedReg 2014-02-01
15 schema:description The background method is adapted to derive rigorous limits on surface speeds and bulk energy dissipation for shear stress-driven flow in two- and three-dimensional channels. By-products of the analysis are nonlinear energy stability results for plane Couette flow with a shear stress boundary condition: when the applied stress is gauged by a dimensionless Grashoff number , the critical for energy stability is 139.5 in two dimensions, and 51.73 in three dimensions. We derive upper bounds on the friction (a.k.a. dissipation) coefficient , where τ is the applied shear stress and is the mean velocity of the fluid at the surface, for flows at higher including developed turbulence: Cf≤1/32 in two dimensions and Cf≤1/8 in three dimensions. This analysis rigorously justifies previously computed numerical estimates.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N1ac4c4727968447aba85f264b18d8c32
20 Nf0251df6d5aa417184aa7fe642a61c2e
21 sg:journal.1136738
22 schema:name Bounds on Surface Stress-Driven Shear Flow
23 schema:pagination 185-199
24 schema:productId N39e719c9b85a413e965f0cb3f7826765
25 N7fb5dd165cf041ec927f32695eaf65b2
26 Nfadbdc9161b94a0e8e2b192e506e902f
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047373442
28 https://doi.org/10.1007/s00332-013-9183-4
29 schema:sdDatePublished 2019-04-10T19:09
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N88ec76cd20a046f5b97e31ebfb65d7ef
32 schema:url http://link.springer.com/10.1007%2Fs00332-013-9183-4
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N1ac4c4727968447aba85f264b18d8c32 schema:volumeNumber 24
37 rdf:type schema:PublicationVolume
38 N374a9a0d4ea64921b1d41c9fd751ef8d rdf:first sg:person.01161117310.79
39 rdf:rest rdf:nil
40 N39e719c9b85a413e965f0cb3f7826765 schema:name doi
41 schema:value 10.1007/s00332-013-9183-4
42 rdf:type schema:PropertyValue
43 N7fb5dd165cf041ec927f32695eaf65b2 schema:name readcube_id
44 schema:value e1ac28a1163d68e8b1ea64d8362a806b1c3dd788bb976b2d2b27c78cd2619947
45 rdf:type schema:PropertyValue
46 N88ec76cd20a046f5b97e31ebfb65d7ef schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nd0df4e9f64e842e0af8ad54fb2ac29a9 rdf:first sg:person.010603662241.40
49 rdf:rest N374a9a0d4ea64921b1d41c9fd751ef8d
50 Nf0251df6d5aa417184aa7fe642a61c2e schema:issueNumber 1
51 rdf:type schema:PublicationIssue
52 Nfadbdc9161b94a0e8e2b192e506e902f schema:name dimensions_id
53 schema:value pub.1047373442
54 rdf:type schema:PropertyValue
55 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
56 schema:name Engineering
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
59 schema:name Interdisciplinary Engineering
60 rdf:type schema:DefinedTerm
61 sg:grant.3001816 http://pending.schema.org/fundedItem sg:pub.10.1007/s00332-013-9183-4
62 rdf:type schema:MonetaryGrant
63 sg:grant.3065512 http://pending.schema.org/fundedItem sg:pub.10.1007/s00332-013-9183-4
64 rdf:type schema:MonetaryGrant
65 sg:grant.3098156 http://pending.schema.org/fundedItem sg:pub.10.1007/s00332-013-9183-4
66 rdf:type schema:MonetaryGrant
67 sg:grant.4320863 http://pending.schema.org/fundedItem sg:pub.10.1007/s00332-013-9183-4
68 rdf:type schema:MonetaryGrant
69 sg:journal.1136738 schema:issn 0938-8974
70 1432-1467
71 schema:name Journal of Nonlinear Science
72 rdf:type schema:Periodical
73 sg:person.010603662241.40 schema:affiliation https://www.grid.ac/institutes/grid.482020.c
74 schema:familyName Hagstrom
75 schema:givenName George I.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010603662241.40
77 rdf:type schema:Person
78 sg:person.01161117310.79 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
79 schema:familyName Doering
80 schema:givenName Charles R.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01161117310.79
82 rdf:type schema:Person
83 https://doi.org/10.1017/s0022112002002410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053968966
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1017/s0022112004009589 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053988518
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1017/s0022112006000097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053988841
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1017/s0022112010003897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053906187
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physreve.49.4087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716489
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1103/physreve.53.5957 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060719390
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physreve.81.047301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060740456
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physrevlett.106.244501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000886420
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.69.1648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805286
100 rdf:type schema:CreativeWork
101 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
102 schema:name Departments of Physics and Mathematics, and Center of the Study of Complex Systems, University of Michigan, 48109-1034, Ann Arbor, MI, USA
103 rdf:type schema:Organization
104 https://www.grid.ac/institutes/grid.482020.c schema:alternateName Courant Institute of Mathematical Sciences
105 schema:name Magneto-Fluids Division, Courant Institute of Mathematical Sciences, New York University, 10012-1185, New York, NY, USA
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...