Stability Switches in a Host–Pathogen Model as the Length of a Time Delay Increases View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-08-17

AUTHORS

Jennifer J. H. Reynolds, Jonathan A. Sherratt, Andrew White

ABSTRACT

The destabilising effects of a time delay in mathematical models are well known. However, delays are not necessarily destabilising. In this paper, we explore an example of a biological system where a time delay can be both stabilising and destabilising. This example is a host–pathogen model, incorporating density-dependent prophylaxis (DDP). DDP describes when individual hosts invest more in immunity when population densities are high, due to the increased risk of infection in crowded conditions. In this system, as the delay length increases, there are a finite number of switches between stable and unstable behaviour. These stability switches are demonstrated and characterised using a combination of numerical methods and analysis. More... »

PAGES

1073-1087

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00332-013-9179-0

DOI

http://dx.doi.org/10.1007/s00332-013-9179-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047916743


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.9531.e", 
          "name": [
            "Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reynolds", 
        "givenName": "Jennifer J. H.", 
        "id": "sg:person.01262456321.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262456321.54"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.9531.e", 
          "name": [
            "Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sherratt", 
        "givenName": "Jonathan A.", 
        "id": "sg:person.01010517364.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010517364.85"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK", 
          "id": "http://www.grid.ac/institutes/grid.9531.e", 
          "name": [
            "Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "White", 
        "givenName": "Andrew", 
        "id": "sg:person.0640757150.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640757150.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/280361a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045057643", 
          "https://doi.org/10.1038/280361a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/287017a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028561667", 
          "https://doi.org/10.1038/287017a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/38483", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030436836", 
          "https://doi.org/10.1038/38483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b98868", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028080802", 
          "https://doi.org/10.1007/b98868"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-08-17", 
    "datePublishedReg": "2013-08-17", 
    "description": "The destabilising effects of a time delay in mathematical models are well known. However, delays are not necessarily destabilising. In this paper, we explore an example of a biological system where a time delay can be both stabilising and destabilising. This example is a host\u2013pathogen model, incorporating density-dependent prophylaxis (DDP). DDP describes when individual hosts invest more in immunity when population densities are high, due to the increased risk of infection in crowded conditions. In this system, as the delay length increases, there are a finite number of switches between stable and unstable behaviour. These stability switches are demonstrated and characterised using a combination of numerical methods and analysis.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00332-013-9179-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136738", 
        "issn": [
          "0938-8974", 
          "1432-1467"
        ], 
        "name": "Journal of Nonlinear Science", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "stability switches", 
      "time delay", 
      "mathematical model", 
      "finite number", 
      "numerical method", 
      "time delay increases", 
      "unstable behavior", 
      "delay increases", 
      "host-pathogen model", 
      "delay", 
      "biological systems", 
      "model", 
      "length increases", 
      "system", 
      "destabilising effect", 
      "switch", 
      "density-dependent prophylaxis", 
      "density", 
      "number", 
      "behavior", 
      "conditions", 
      "length", 
      "analysis", 
      "individual hosts", 
      "combination", 
      "population density", 
      "effect", 
      "increase", 
      "host", 
      "risk", 
      "crowded conditions", 
      "risk of infection", 
      "immunity", 
      "example", 
      "paper", 
      "method", 
      "infection", 
      "prophylaxis"
    ], 
    "name": "Stability Switches in a Host\u2013Pathogen Model as the Length of a Time Delay Increases", 
    "pagination": "1073-1087", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047916743"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00332-013-9179-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00332-013-9179-0", 
      "https://app.dimensions.ai/details/publication/pub.1047916743"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_586.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00332-013-9179-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9179-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9179-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9179-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00332-013-9179-0'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      66 URIs      54 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00332-013-9179-0 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author N95d7702d4838449291651a3d4712c222
4 schema:citation sg:pub.10.1007/b98868
5 sg:pub.10.1038/280361a0
6 sg:pub.10.1038/287017a0
7 sg:pub.10.1038/38483
8 schema:datePublished 2013-08-17
9 schema:datePublishedReg 2013-08-17
10 schema:description The destabilising effects of a time delay in mathematical models are well known. However, delays are not necessarily destabilising. In this paper, we explore an example of a biological system where a time delay can be both stabilising and destabilising. This example is a host–pathogen model, incorporating density-dependent prophylaxis (DDP). DDP describes when individual hosts invest more in immunity when population densities are high, due to the increased risk of infection in crowded conditions. In this system, as the delay length increases, there are a finite number of switches between stable and unstable behaviour. These stability switches are demonstrated and characterised using a combination of numerical methods and analysis.
11 schema:genre article
12 schema:isAccessibleForFree true
13 schema:isPartOf N95c65e502f3d4325a6e9f45421dca97c
14 Nf6520478c62b4c4f9c300186f4e11220
15 sg:journal.1136738
16 schema:keywords analysis
17 behavior
18 biological systems
19 combination
20 conditions
21 crowded conditions
22 delay
23 delay increases
24 density
25 density-dependent prophylaxis
26 destabilising effect
27 effect
28 example
29 finite number
30 host
31 host-pathogen model
32 immunity
33 increase
34 individual hosts
35 infection
36 length
37 length increases
38 mathematical model
39 method
40 model
41 number
42 numerical method
43 paper
44 population density
45 prophylaxis
46 risk
47 risk of infection
48 stability switches
49 switch
50 system
51 time delay
52 time delay increases
53 unstable behavior
54 schema:name Stability Switches in a Host–Pathogen Model as the Length of a Time Delay Increases
55 schema:pagination 1073-1087
56 schema:productId N4568bd1f3b444c709e2c303ae2548a92
57 Nf74b9fdc688d4530b1f3c4c78129b440
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047916743
59 https://doi.org/10.1007/s00332-013-9179-0
60 schema:sdDatePublished 2022-12-01T06:30
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nf9282acebf5043f2a924a9e8f5e8e7f0
63 schema:url https://doi.org/10.1007/s00332-013-9179-0
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N1b04602ff75d4cf08bd4894679dd2fff rdf:first sg:person.01010517364.85
68 rdf:rest Nf26849ae6bdc40b5b3b6dc9cbc06c5e6
69 N4568bd1f3b444c709e2c303ae2548a92 schema:name doi
70 schema:value 10.1007/s00332-013-9179-0
71 rdf:type schema:PropertyValue
72 N95c65e502f3d4325a6e9f45421dca97c schema:issueNumber 6
73 rdf:type schema:PublicationIssue
74 N95d7702d4838449291651a3d4712c222 rdf:first sg:person.01262456321.54
75 rdf:rest N1b04602ff75d4cf08bd4894679dd2fff
76 Nf26849ae6bdc40b5b3b6dc9cbc06c5e6 rdf:first sg:person.0640757150.29
77 rdf:rest rdf:nil
78 Nf6520478c62b4c4f9c300186f4e11220 schema:volumeNumber 23
79 rdf:type schema:PublicationVolume
80 Nf74b9fdc688d4530b1f3c4c78129b440 schema:name dimensions_id
81 schema:value pub.1047916743
82 rdf:type schema:PropertyValue
83 Nf9282acebf5043f2a924a9e8f5e8e7f0 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
89 schema:name Applied Mathematics
90 rdf:type schema:DefinedTerm
91 sg:journal.1136738 schema:issn 0938-8974
92 1432-1467
93 schema:name Journal of Nonlinear Science
94 schema:publisher Springer Nature
95 rdf:type schema:Periodical
96 sg:person.01010517364.85 schema:affiliation grid-institutes:grid.9531.e
97 schema:familyName Sherratt
98 schema:givenName Jonathan A.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010517364.85
100 rdf:type schema:Person
101 sg:person.01262456321.54 schema:affiliation grid-institutes:grid.9531.e
102 schema:familyName Reynolds
103 schema:givenName Jennifer J. H.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01262456321.54
105 rdf:type schema:Person
106 sg:person.0640757150.29 schema:affiliation grid-institutes:grid.9531.e
107 schema:familyName White
108 schema:givenName Andrew
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0640757150.29
110 rdf:type schema:Person
111 sg:pub.10.1007/b98868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028080802
112 https://doi.org/10.1007/b98868
113 rdf:type schema:CreativeWork
114 sg:pub.10.1038/280361a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045057643
115 https://doi.org/10.1038/280361a0
116 rdf:type schema:CreativeWork
117 sg:pub.10.1038/287017a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028561667
118 https://doi.org/10.1038/287017a0
119 rdf:type schema:CreativeWork
120 sg:pub.10.1038/38483 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030436836
121 https://doi.org/10.1038/38483
122 rdf:type schema:CreativeWork
123 grid-institutes:grid.9531.e schema:alternateName Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK
124 schema:name Department of Mathematics and the Maxwell Institute for Mathematical Sciences, Heriot-Watt University, EH14 4AS, Edinburgh, UK
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...