Multislice CT imaging of pulmonary embolism View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2001-11

AUTHORS

Joseph U. Schoepf, Markus A. Kessler, Christina T. Rieger, Peter Herzog, Ernst Klotz, Silvia Wiesgigl, Christoph R. Becker, Dimitrios N. Exarhos, Maximilian F. Reiser

ABSTRACT

In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses. More... »

PAGES

2278-2286

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s003300100948

DOI

http://dx.doi.org/10.1007/s003300100948

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021668327

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/11702173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Hypertension, Pulmonary", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Artery", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Embolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Venous Thrombosis", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schoepf", 
        "givenName": "Joseph U.", 
        "id": "sg:person.0641151614.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641151614.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kessler", 
        "givenName": "Markus A.", 
        "id": "sg:person.015460747762.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460747762.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rieger", 
        "givenName": "Christina T.", 
        "id": "sg:person.01016733123.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016733123.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Herzog", 
        "givenName": "Peter", 
        "id": "sg:person.0765723546.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765723546.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Siemens Medical Engineering, Division of Computed Tomography, Forchheim, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klotz", 
        "givenName": "Ernst", 
        "id": "sg:person.01304510033.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304510033.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wiesgigl", 
        "givenName": "Silvia", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becker", 
        "givenName": "Christoph R.", 
        "id": "sg:person.01057430035.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057430035.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Exarhos", 
        "givenName": "Dimitrios N.", 
        "id": "sg:person.01306403533.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306403533.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reiser", 
        "givenName": "Maximilian F.", 
        "id": "sg:person.01356220235.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356220235.06"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1148/radiology.212.3.r99se08649", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000078601"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1076-6332(97)80080-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002241478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300050557", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002356947", 
          "https://doi.org/10.1007/s003300050557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiographics.20.2.g00mc17491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002852369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm199705153362004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006878701"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archinte.1994.00420030093009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007580984"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.2.r00ma23535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009441107"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.212.3.r99se02615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011587854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.214.2.r00fe10433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018475936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.212.3.r99se35890", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021664063"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003300050666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022923166", 
          "https://doi.org/10.1007/s003300050666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.85.2.462", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028356306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(99)00032-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031961157"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.598777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035866275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0887-2171(05)80091-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037752013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.209699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039303105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0720-048x(99)00086-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044882901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.216.3.r00se44744", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047367213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.210.3.r99mr41689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049195519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiology.215.1.r00ap3755", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049838504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.96.3.716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063338283"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.cir.96.3.882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063338305"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.171.4.9763002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069321955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.174.1.1740067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069322890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.174.4.1741041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069323113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.175.6.1751525", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069323642"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2001-11", 
    "datePublishedReg": "2001-11-01", 
    "description": "In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s003300100948", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "11"
      }
    ], 
    "name": "Multislice CT imaging of pulmonary embolism", 
    "pagination": "2278-2286", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "673cef01efd316acd6629297486eedb632e67d58c08b1d22016c2b0723885340"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "11702173"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s003300100948"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021668327"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s003300100948", 
      "https://app.dimensions.ai/details/publication/pub.1021668327"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000512.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs003300100948"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s003300100948'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s003300100948'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s003300100948'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s003300100948'


 

This table displays all metadata directly associated to this object as RDF triples.

247 TRIPLES      21 PREDICATES      62 URIs      28 LITERALS      16 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s003300100948 schema:about N3bfe464e82874205b433752aadaffe0d
2 N4ae70d26ec8d455aaadd0ae873af2d5c
3 N6d4a7c57284d4a9889946a261e92033f
4 N8ac061b8697c48eca1d0616f3785d59a
5 N94b356b2cce14f96a199a8c1a1ff5c07
6 Nbc603792f4a441bd96230dce80247bcb
7 Nc7daf563b27b4664adc4043b543d3414
8 anzsrc-for:11
9 anzsrc-for:1102
10 schema:author N9ea94d1afb2e45d09a5972c184623770
11 schema:citation sg:pub.10.1007/s003300050557
12 sg:pub.10.1007/s003300050666
13 https://doi.org/10.1001/archinte.1994.00420030093009
14 https://doi.org/10.1016/s0720-048x(99)00032-7
15 https://doi.org/10.1016/s0720-048x(99)00086-8
16 https://doi.org/10.1016/s0887-2171(05)80091-5
17 https://doi.org/10.1016/s1076-6332(97)80080-3
18 https://doi.org/10.1056/nejm199705153362004
19 https://doi.org/10.1117/12.209699
20 https://doi.org/10.1118/1.598777
21 https://doi.org/10.1148/radiographics.20.2.g00mc17491
22 https://doi.org/10.1148/radiology.210.3.r99mr41689
23 https://doi.org/10.1148/radiology.212.3.r99se02615
24 https://doi.org/10.1148/radiology.212.3.r99se08649
25 https://doi.org/10.1148/radiology.212.3.r99se35890
26 https://doi.org/10.1148/radiology.214.2.r00fe10433
27 https://doi.org/10.1148/radiology.215.1.r00ap3755
28 https://doi.org/10.1148/radiology.215.2.r00ma23535
29 https://doi.org/10.1148/radiology.216.3.r00se44744
30 https://doi.org/10.1161/01.cir.85.2.462
31 https://doi.org/10.1161/01.cir.96.3.716
32 https://doi.org/10.1161/01.cir.96.3.882
33 https://doi.org/10.2214/ajr.171.4.9763002
34 https://doi.org/10.2214/ajr.174.1.1740067
35 https://doi.org/10.2214/ajr.174.4.1741041
36 https://doi.org/10.2214/ajr.175.6.1751525
37 schema:datePublished 2001-11
38 schema:datePublishedReg 2001-11-01
39 schema:description In recent years CT has been established as the method of choice for the diagnosis of central pulmonary embolism (PE) to the level of the segmental arteries. The key advantage of CT over competing modalities is the reliable detection of relevant alternative or additional disease causing the patient's symptoms. Although the clinical relevance of isolated peripheral emboli remains unclear, the alleged poor sensitivity of CT for the detection of such small clots has to date prevented the acceptance of CT as the gold standard for diagnosing PE. With the advent of multislice CT we can now cover the entire chest of a patient with 1-mm slices within one breath-hold. In comparison with thicker sections, the detection rate of subsegmental emboli can be significantly increased with 1-mm slices. In addition, the interobserver correlation which can be achieved with 1-mm sections by far exceeds the reproducibility of competing modalities. Meanwhile use of multislice CT for a combined diagnosis of PE and deep venous thrombosis with the same modality appears to be clinically accepted. In the vast majority of patients who receive a combined thoracic and venous multislice CT examination the scan either confirms the suspected diagnosis or reveals relevant alternative or additional disease. The therapeutic regimen is usually chosen based on the functional effect of embolic vascular occlusion. With the advent of fast CT scanning techniques, also functional parameters of lung perfusion can be non-invasively assessed by CT imaging. These advantages let multislice CT appear as an attractive modality for a non-invasive, fast, accurate, and comprehensive diagnosis of PE, its causes, effects, and differential diagnoses.
40 schema:genre research_article
41 schema:inLanguage en
42 schema:isAccessibleForFree false
43 schema:isPartOf N57478ccab1044cf99dde6ddb12e713e7
44 Ne81b79943f1648ae9343b9e814ec753d
45 sg:journal.1289120
46 schema:name Multislice CT imaging of pulmonary embolism
47 schema:pagination 2278-2286
48 schema:productId N4a4b0eb82ce745cbace109063d611886
49 N67d2ad4e8a114654bf27869882307dc6
50 N7e37d00e6f7f4069803c84ded179fd5e
51 N8d1574b0a12747e1928e61b0c3e3394a
52 Nf30e4e67d3764715949454f36aba41c7
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021668327
54 https://doi.org/10.1007/s003300100948
55 schema:sdDatePublished 2019-04-10T14:09
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N6ac42ce30b0042d091da6c2c1cef1e5c
58 schema:url http://link.springer.com/10.1007%2Fs003300100948
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N0a0a7f1efacf42d989482d3abc6501cd schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
63 rdf:type schema:Organization
64 N0f02057bbfc84e3e9e0db019b2210634 rdf:first sg:person.01304510033.06
65 rdf:rest Nd13005223a54452fa45c8a3af721f244
66 N15e8f5f1ed6445a987068b4d04470470 schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
67 rdf:type schema:Organization
68 N1a9e2badf30949739c5847094aa35a2c schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
69 rdf:type schema:Organization
70 N1bec8b94d07e4f97b9921f726da195f1 schema:affiliation Nf90ddb5d80824a73a7e78dd88017c2f6
71 schema:familyName Wiesgigl
72 schema:givenName Silvia
73 rdf:type schema:Person
74 N28c5ef521c204873950f2f25511a93fe rdf:first sg:person.01356220235.06
75 rdf:rest rdf:nil
76 N3bfe464e82874205b433752aadaffe0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Pulmonary Embolism
78 rdf:type schema:DefinedTerm
79 N46fcb9d1c2b64f3d8f0d6b630bb053bd schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
80 rdf:type schema:Organization
81 N4a4b0eb82ce745cbace109063d611886 schema:name doi
82 schema:value 10.1007/s003300100948
83 rdf:type schema:PropertyValue
84 N4ae70d26ec8d455aaadd0ae873af2d5c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Pulmonary Circulation
86 rdf:type schema:DefinedTerm
87 N57478ccab1044cf99dde6ddb12e713e7 schema:volumeNumber 11
88 rdf:type schema:PublicationVolume
89 N67d2ad4e8a114654bf27869882307dc6 schema:name dimensions_id
90 schema:value pub.1021668327
91 rdf:type schema:PropertyValue
92 N6ac42ce30b0042d091da6c2c1cef1e5c schema:name Springer Nature - SN SciGraph project
93 rdf:type schema:Organization
94 N6d4a7c57284d4a9889946a261e92033f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Humans
96 rdf:type schema:DefinedTerm
97 N7da1e39053464964b8e915682ba277c5 schema:name Siemens Medical Engineering, Division of Computed Tomography, Forchheim, Germany, Germany
98 rdf:type schema:Organization
99 N7e37d00e6f7f4069803c84ded179fd5e schema:name readcube_id
100 schema:value 673cef01efd316acd6629297486eedb632e67d58c08b1d22016c2b0723885340
101 rdf:type schema:PropertyValue
102 N7f2311bf73c74817b44544f856791db1 rdf:first sg:person.0765723546.16
103 rdf:rest N0f02057bbfc84e3e9e0db019b2210634
104 N8ac061b8697c48eca1d0616f3785d59a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
105 schema:name Venous Thrombosis
106 rdf:type schema:DefinedTerm
107 N8ce1a003edc54e0a966a3348653bd4bc schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
108 rdf:type schema:Organization
109 N8d1574b0a12747e1928e61b0c3e3394a schema:name pubmed_id
110 schema:value 11702173
111 rdf:type schema:PropertyValue
112 N8e2b14a54eb742138883c7742c7088bf rdf:first sg:person.01016733123.98
113 rdf:rest N7f2311bf73c74817b44544f856791db1
114 N94b356b2cce14f96a199a8c1a1ff5c07 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Hypertension, Pulmonary
116 rdf:type schema:DefinedTerm
117 N9ea94d1afb2e45d09a5972c184623770 rdf:first sg:person.0641151614.40
118 rdf:rest Nae744037e1624f62951e131fe0e13324
119 Na5234b3428af4c269da6952d84cce1a1 rdf:first sg:person.01306403533.05
120 rdf:rest N28c5ef521c204873950f2f25511a93fe
121 Na916dc12d0dc4eb29953b8e27deef982 schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
122 rdf:type schema:Organization
123 Nae744037e1624f62951e131fe0e13324 rdf:first sg:person.015460747762.02
124 rdf:rest N8e2b14a54eb742138883c7742c7088bf
125 Nbc603792f4a441bd96230dce80247bcb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Pulmonary Artery
127 rdf:type schema:DefinedTerm
128 Nc75ab9ad02dc476b83251a74f580d456 rdf:first sg:person.01057430035.94
129 rdf:rest Na5234b3428af4c269da6952d84cce1a1
130 Nc7daf563b27b4664adc4043b543d3414 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Tomography, X-Ray Computed
132 rdf:type schema:DefinedTerm
133 Nd13005223a54452fa45c8a3af721f244 rdf:first N1bec8b94d07e4f97b9921f726da195f1
134 rdf:rest Nc75ab9ad02dc476b83251a74f580d456
135 Ne68325391b064a719a19151316174b1b schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
136 rdf:type schema:Organization
137 Ne81b79943f1648ae9343b9e814ec753d schema:issueNumber 11
138 rdf:type schema:PublicationIssue
139 Nf30e4e67d3764715949454f36aba41c7 schema:name nlm_unique_id
140 schema:value 9114774
141 rdf:type schema:PropertyValue
142 Nf90ddb5d80824a73a7e78dd88017c2f6 schema:name Institute of Clinical Radiology, University of Munich, Klinikum Grosshadern, Marchioninistrasse 15, 81377 Munich, Germany, Germany
143 rdf:type schema:Organization
144 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
145 schema:name Medical and Health Sciences
146 rdf:type schema:DefinedTerm
147 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
148 schema:name Cardiorespiratory Medicine and Haematology
149 rdf:type schema:DefinedTerm
150 sg:journal.1289120 schema:issn 0938-7994
151 1432-1084
152 schema:name European Radiology
153 rdf:type schema:Periodical
154 sg:person.01016733123.98 schema:affiliation N46fcb9d1c2b64f3d8f0d6b630bb053bd
155 schema:familyName Rieger
156 schema:givenName Christina T.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01016733123.98
158 rdf:type schema:Person
159 sg:person.01057430035.94 schema:affiliation Ne68325391b064a719a19151316174b1b
160 schema:familyName Becker
161 schema:givenName Christoph R.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01057430035.94
163 rdf:type schema:Person
164 sg:person.01304510033.06 schema:affiliation N7da1e39053464964b8e915682ba277c5
165 schema:familyName Klotz
166 schema:givenName Ernst
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304510033.06
168 rdf:type schema:Person
169 sg:person.01306403533.05 schema:affiliation N1a9e2badf30949739c5847094aa35a2c
170 schema:familyName Exarhos
171 schema:givenName Dimitrios N.
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01306403533.05
173 rdf:type schema:Person
174 sg:person.01356220235.06 schema:affiliation N15e8f5f1ed6445a987068b4d04470470
175 schema:familyName Reiser
176 schema:givenName Maximilian F.
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01356220235.06
178 rdf:type schema:Person
179 sg:person.015460747762.02 schema:affiliation N8ce1a003edc54e0a966a3348653bd4bc
180 schema:familyName Kessler
181 schema:givenName Markus A.
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015460747762.02
183 rdf:type schema:Person
184 sg:person.0641151614.40 schema:affiliation N0a0a7f1efacf42d989482d3abc6501cd
185 schema:familyName Schoepf
186 schema:givenName Joseph U.
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641151614.40
188 rdf:type schema:Person
189 sg:person.0765723546.16 schema:affiliation Na916dc12d0dc4eb29953b8e27deef982
190 schema:familyName Herzog
191 schema:givenName Peter
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0765723546.16
193 rdf:type schema:Person
194 sg:pub.10.1007/s003300050557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002356947
195 https://doi.org/10.1007/s003300050557
196 rdf:type schema:CreativeWork
197 sg:pub.10.1007/s003300050666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022923166
198 https://doi.org/10.1007/s003300050666
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1001/archinte.1994.00420030093009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007580984
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/s0720-048x(99)00032-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031961157
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0720-048x(99)00086-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044882901
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0887-2171(05)80091-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037752013
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s1076-6332(97)80080-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002241478
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1056/nejm199705153362004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006878701
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1117/12.209699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039303105
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1118/1.598777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035866275
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1148/radiographics.20.2.g00mc17491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002852369
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1148/radiology.210.3.r99mr41689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049195519
219 rdf:type schema:CreativeWork
220 https://doi.org/10.1148/radiology.212.3.r99se02615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011587854
221 rdf:type schema:CreativeWork
222 https://doi.org/10.1148/radiology.212.3.r99se08649 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000078601
223 rdf:type schema:CreativeWork
224 https://doi.org/10.1148/radiology.212.3.r99se35890 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021664063
225 rdf:type schema:CreativeWork
226 https://doi.org/10.1148/radiology.214.2.r00fe10433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018475936
227 rdf:type schema:CreativeWork
228 https://doi.org/10.1148/radiology.215.1.r00ap3755 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049838504
229 rdf:type schema:CreativeWork
230 https://doi.org/10.1148/radiology.215.2.r00ma23535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009441107
231 rdf:type schema:CreativeWork
232 https://doi.org/10.1148/radiology.216.3.r00se44744 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047367213
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1161/01.cir.85.2.462 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028356306
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1161/01.cir.96.3.716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063338283
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1161/01.cir.96.3.882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063338305
239 rdf:type schema:CreativeWork
240 https://doi.org/10.2214/ajr.171.4.9763002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069321955
241 rdf:type schema:CreativeWork
242 https://doi.org/10.2214/ajr.174.1.1740067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069322890
243 rdf:type schema:CreativeWork
244 https://doi.org/10.2214/ajr.174.4.1741041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069323113
245 rdf:type schema:CreativeWork
246 https://doi.org/10.2214/ajr.175.6.1751525 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069323642
247 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...