MR Elastography-Based Shear Strain Mapping for Assessment of Microvascular Invasion in Hepatocellular Carcinoma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02-11

AUTHORS

Mengsi Li, Ziying Yin, Bing Hu, Ning Guo, Linqi Zhang, Lina Zhang, Jie Zhu, Wenying Chen, Meng Yin, Jun Chen, Richard L. Ehman, Jin Wang

ABSTRACT

ObjectivesTo evaluate the potential of MR elastography (MRE)–based shear strain mapping to noninvasively predict the presence of microvascular invasion (MVI) in hepatocellular carcinoma (HCC).MethodsFifty-nine histopathology-proven HCC patients with conventional 60-Hz MRE examinations (+/−MVI, n = 34/25) were enrolled retrospectively between December 2016 and October 2019, with one subgroup comprising 29/59 patients (+/−MVI, n = 16/13) who also underwent 40- and 30-Hz MRE examinations. Octahedral shear strain (OSS) maps were calculated, and the percentage of peritumoral interface length with low shear strain (i.e., a low-shear-strain length, pLSL, %) was recorded. For OSS-pLSL, differences between the MVI (+) and MVI (−) groups and diagnostic performance at different MRE frequencies were analyzed using the Mann-Whitney test and area under the receiver operating characteristic curve (AUC), respectively.ResultsThe peritumor OSS-pLSL was significantly higher in the MVI (+) group than in the MVI (−) group at the three frequencies (all p < 0.01). The AUC of peritumor OSS-pLSL for predicting MVI was good/excellent in all frequency groups (60-Hz: 0.73 (n = 59)/0.80 (n = 29); 40-Hz: 0.84; 30-Hz: 0.90). On further analysis of the 29 cases with all frequencies, the AUCs were not significantly different. As the frequency decreased from 60-Hz, the specificity of OSS increased at 40-Hz (53.8–61.5%) and further increased at 30-Hz (53.8–76.9%), and the sensitivity remained high at lower frequencies (100.0–93.8%) (all p > 0.05).ConclusionsMRE-based shear strain mapping is a promising technique for noninvasively predicting the presence of MVI in patients with HCC, and the most recommended frequency for OSS is 30-Hz.Key Points• MR elastography (MRE)–based shear strain mapping has the potential to predict the presence of microvascular invasion (MVI) in hepatocellular carcinoma preoperatively.• The low interface shear strain identified at tumor–liver boundaries was highly correlated with the presence of MVI. More... »

PAGES

5024-5032

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-022-08578-w

DOI

http://dx.doi.org/10.1007/s00330-022-08578-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1145465349

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/35147777


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Elasticity Imaging Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Invasiveness", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Mengsi", 
        "id": "sg:person.015234231201.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234231201.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Ziying", 
        "id": "sg:person.01204263721.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204263721.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Bing", 
        "id": "sg:person.01300722224.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300722224.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Ning", 
        "id": "sg:person.010177166473.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010177166473.94"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Linqi", 
        "id": "sg:person.011755534243.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Lina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Jie", 
        "id": "sg:person.016516604701.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516604701.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Wenying", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yin", 
        "givenName": "Meng", 
        "id": "sg:person.01042251410.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Jun", 
        "id": "sg:person.01023412627.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.66875.3a", 
          "name": [
            "Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ehman", 
        "givenName": "Richard L.", 
        "id": "sg:person.0634643630.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China", 
          "id": "http://www.grid.ac/institutes/grid.12981.33", 
          "name": [
            "Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Jin", 
        "id": "sg:person.016236616374.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11604-019-00817-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111893579", 
          "https://doi.org/10.1007/s11604-019-00817-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-018-1646-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104292101", 
          "https://doi.org/10.1007/s00261-018-1646-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-020-02656-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1129604937", 
          "https://doi.org/10.1007/s00261-020-02656-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-021-07918-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1137196787", 
          "https://doi.org/10.1007/s00330-021-07918-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2016.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016162025", 
          "https://doi.org/10.1038/ajg.2016.220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00432-016-2286-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011160420", 
          "https://doi.org/10.1007/s00432-016-2286-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ajg.2016.65", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030586117", 
          "https://doi.org/10.1038/ajg.2016.65"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-012-2474-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015353362", 
          "https://doi.org/10.1007/s00330-012-2474-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02-11", 
    "datePublishedReg": "2022-02-11", 
    "description": "ObjectivesTo evaluate the potential of MR elastography (MRE)\u2013based shear strain mapping to noninvasively predict the presence of microvascular invasion (MVI) in hepatocellular carcinoma (HCC).MethodsFifty-nine histopathology-proven HCC patients with conventional 60-Hz MRE examinations (+/\u2212MVI, n = 34/25) were enrolled retrospectively between December 2016 and October 2019, with one subgroup comprising 29/59 patients (+/\u2212MVI, n = 16/13) who also underwent 40- and 30-Hz MRE examinations. Octahedral shear strain (OSS) maps were calculated, and the percentage of peritumoral interface length with low shear strain (i.e., a low-shear-strain length, pLSL, %) was recorded. For OSS-pLSL, differences between the MVI (+) and MVI (\u2212) groups and diagnostic performance at different MRE frequencies were analyzed using the Mann-Whitney test and area under the receiver operating characteristic curve (AUC), respectively.ResultsThe peritumor OSS-pLSL was significantly higher in the MVI (+) group than in the MVI (\u2212) group at the three frequencies (all p < 0.01). The AUC of peritumor OSS-pLSL for predicting MVI was good/excellent in all frequency groups (60-Hz: 0.73 (n = 59)/0.80 (n = 29); 40-Hz: 0.84; 30-Hz: 0.90). On further analysis of the 29 cases with all frequencies, the AUCs were not significantly different. As the frequency decreased from 60-Hz, the specificity of OSS increased at 40-Hz (53.8\u201361.5%) and further increased at 30-Hz (53.8\u201376.9%), and the sensitivity remained high at lower frequencies (100.0\u201393.8%) (all p > 0.05).ConclusionsMRE-based shear strain mapping is a promising technique for noninvasively predicting the presence of MVI in patients with HCC, and the most recommended frequency for OSS is 30-Hz.Key Points\u2022 MR elastography (MRE)\u2013based shear strain mapping has the potential to predict the presence of microvascular invasion (MVI) in  hepatocellular carcinoma preoperatively.\u2022 The low interface shear strain identified at tumor\u2013liver boundaries was highly correlated with the presence of MVI.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-022-08578-w", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8633027", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "32"
      }
    ], 
    "keywords": [
      "strain mapping", 
      "presence of MVI", 
      "shear strain", 
      "microvascular invasion", 
      "hepatocellular carcinoma", 
      "MVI group", 
      "low shear strain", 
      "MRE examinations", 
      "MR elastography", 
      "strain maps", 
      "interface length", 
      "Mann-Whitney test", 
      "HCC patients", 
      "patients", 
      "carcinoma", 
      "promising technique", 
      "diagnostic performance", 
      "characteristic curve", 
      "elastography", 
      "invasion", 
      "AUC", 
      "low frequency", 
      "group", 
      "examination", 
      "frequency group", 
      "frequency", 
      "ConclusionsMRE", 
      "ObjectivesTo", 
      "subgroups", 
      "performance", 
      "Further analysis", 
      "presence", 
      "boundaries", 
      "mapping", 
      "strains", 
      "receiver", 
      "specificity", 
      "potential", 
      "percentage", 
      "technique", 
      "assessment", 
      "curves", 
      "test", 
      "differences", 
      "cases", 
      "sensitivity", 
      "length", 
      "maps", 
      "area", 
      "analysis", 
      "OSS"
    ], 
    "name": "MR Elastography-Based Shear Strain Mapping for Assessment of Microvascular Invasion in Hepatocellular Carcinoma", 
    "pagination": "5024-5032", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1145465349"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-022-08578-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "35147777"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-022-08578-w", 
      "https://app.dimensions.ai/details/publication/pub.1145465349"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_951.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-022-08578-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-022-08578-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-022-08578-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-022-08578-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-022-08578-w'


 

This table displays all metadata directly associated to this object as RDF triples.

248 TRIPLES      21 PREDICATES      90 URIs      74 LITERALS      13 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-022-08578-w schema:about N1fc135ebd8f04d589c3f8d173e11cd20
2 N3a4066c2ab8e44e1a7c2341a3b264c27
3 N4de6fcef81134745988548d74d5f0a2b
4 N88ad13f03dff43dcbacbea9b34350c34
5 N89f047a4c3294633991a2d203be3007c
6 Ne13b5d7bd4d249e89aaa9346d3aa483d
7 anzsrc-for:11
8 anzsrc-for:1112
9 schema:author N62ae3362a8064ccaa63aa9694ef5f0f9
10 schema:citation sg:pub.10.1007/s00261-018-1646-5
11 sg:pub.10.1007/s00261-020-02656-7
12 sg:pub.10.1007/s00330-012-2474-6
13 sg:pub.10.1007/s00330-021-07918-6
14 sg:pub.10.1007/s00432-016-2286-1
15 sg:pub.10.1007/s11604-019-00817-3
16 sg:pub.10.1038/ajg.2016.220
17 sg:pub.10.1038/ajg.2016.65
18 schema:datePublished 2022-02-11
19 schema:datePublishedReg 2022-02-11
20 schema:description ObjectivesTo evaluate the potential of MR elastography (MRE)–based shear strain mapping to noninvasively predict the presence of microvascular invasion (MVI) in hepatocellular carcinoma (HCC).MethodsFifty-nine histopathology-proven HCC patients with conventional 60-Hz MRE examinations (+/−MVI, n = 34/25) were enrolled retrospectively between December 2016 and October 2019, with one subgroup comprising 29/59 patients (+/−MVI, n = 16/13) who also underwent 40- and 30-Hz MRE examinations. Octahedral shear strain (OSS) maps were calculated, and the percentage of peritumoral interface length with low shear strain (i.e., a low-shear-strain length, pLSL, %) was recorded. For OSS-pLSL, differences between the MVI (+) and MVI (−) groups and diagnostic performance at different MRE frequencies were analyzed using the Mann-Whitney test and area under the receiver operating characteristic curve (AUC), respectively.ResultsThe peritumor OSS-pLSL was significantly higher in the MVI (+) group than in the MVI (−) group at the three frequencies (all p < 0.01). The AUC of peritumor OSS-pLSL for predicting MVI was good/excellent in all frequency groups (60-Hz: 0.73 (n = 59)/0.80 (n = 29); 40-Hz: 0.84; 30-Hz: 0.90). On further analysis of the 29 cases with all frequencies, the AUCs were not significantly different. As the frequency decreased from 60-Hz, the specificity of OSS increased at 40-Hz (53.8–61.5%) and further increased at 30-Hz (53.8–76.9%), and the sensitivity remained high at lower frequencies (100.0–93.8%) (all p > 0.05).ConclusionsMRE-based shear strain mapping is a promising technique for noninvasively predicting the presence of MVI in patients with HCC, and the most recommended frequency for OSS is 30-Hz.Key Points• MR elastography (MRE)–based shear strain mapping has the potential to predict the presence of microvascular invasion (MVI) in hepatocellular carcinoma preoperatively.• The low interface shear strain identified at tumor–liver boundaries was highly correlated with the presence of MVI.
21 schema:genre article
22 schema:isAccessibleForFree false
23 schema:isPartOf N7efbe6437df04b6da8936baded5b65ca
24 Ne06fcb93bff84dd48073854bd351ceba
25 sg:journal.1289120
26 schema:keywords AUC
27 ConclusionsMRE
28 Further analysis
29 HCC patients
30 MR elastography
31 MRE examinations
32 MVI group
33 Mann-Whitney test
34 OSS
35 ObjectivesTo
36 analysis
37 area
38 assessment
39 boundaries
40 carcinoma
41 cases
42 characteristic curve
43 curves
44 diagnostic performance
45 differences
46 elastography
47 examination
48 frequency
49 frequency group
50 group
51 hepatocellular carcinoma
52 interface length
53 invasion
54 length
55 low frequency
56 low shear strain
57 mapping
58 maps
59 microvascular invasion
60 patients
61 percentage
62 performance
63 potential
64 presence
65 presence of MVI
66 promising technique
67 receiver
68 sensitivity
69 shear strain
70 specificity
71 strain mapping
72 strain maps
73 strains
74 subgroups
75 technique
76 test
77 schema:name MR Elastography-Based Shear Strain Mapping for Assessment of Microvascular Invasion in Hepatocellular Carcinoma
78 schema:pagination 5024-5032
79 schema:productId N1e79533c951f488d974088a8a801cf81
80 N9609bbf6445545d09e5dc414efb476e6
81 Na6b2bcc2d419449d9517d79f162c1ec3
82 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145465349
83 https://doi.org/10.1007/s00330-022-08578-w
84 schema:sdDatePublished 2022-09-02T16:08
85 schema:sdLicense https://scigraph.springernature.com/explorer/license/
86 schema:sdPublisher N17591cc1fdf84522a45cff6c53233532
87 schema:url https://doi.org/10.1007/s00330-022-08578-w
88 sgo:license sg:explorer/license/
89 sgo:sdDataset articles
90 rdf:type schema:ScholarlyArticle
91 N17591cc1fdf84522a45cff6c53233532 schema:name Springer Nature - SN SciGraph project
92 rdf:type schema:Organization
93 N1e79533c951f488d974088a8a801cf81 schema:name pubmed_id
94 schema:value 35147777
95 rdf:type schema:PropertyValue
96 N1edb8e138b544d33b144d3695973ce6b rdf:first sg:person.010177166473.94
97 rdf:rest N46728c2b04794ec1bd729935eb1123e6
98 N1f861289715c4007b7edfb5eeba6c4f8 rdf:first sg:person.01204263721.25
99 rdf:rest Nc512cf30fe84471ead39fcf2c326d8ff
100 N1fc135ebd8f04d589c3f8d173e11cd20 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Neoplasm Invasiveness
102 rdf:type schema:DefinedTerm
103 N32704a942a46425388a3345610ceca1e rdf:first sg:person.01023412627.52
104 rdf:rest Nfc032037a04344499e5c57c767850bcf
105 N3a4066c2ab8e44e1a7c2341a3b264c27 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Liver Neoplasms
107 rdf:type schema:DefinedTerm
108 N3d5a7e11b7114e6682c016f1e1729b29 rdf:first N6ce21621613b442f9bb3e12701ec138a
109 rdf:rest Na41230cf7ee34315b589474f96a8bc93
110 N46728c2b04794ec1bd729935eb1123e6 rdf:first sg:person.011755534243.57
111 rdf:rest Na071122d1c0846c898a1b4e467692e25
112 N4de6fcef81134745988548d74d5f0a2b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Retrospective Studies
114 rdf:type schema:DefinedTerm
115 N5e33f78ced6843e3a26ebc1aad982f7b rdf:first sg:person.016516604701.16
116 rdf:rest N3d5a7e11b7114e6682c016f1e1729b29
117 N5fbc7d537fae4a56bc0169fb7ca47c47 schema:affiliation grid-institutes:grid.12981.33
118 schema:familyName Zhang
119 schema:givenName Lina
120 rdf:type schema:Person
121 N62ae3362a8064ccaa63aa9694ef5f0f9 rdf:first sg:person.015234231201.48
122 rdf:rest N1f861289715c4007b7edfb5eeba6c4f8
123 N6ce21621613b442f9bb3e12701ec138a schema:affiliation grid-institutes:grid.12981.33
124 schema:familyName Chen
125 schema:givenName Wenying
126 rdf:type schema:Person
127 N7efbe6437df04b6da8936baded5b65ca schema:volumeNumber 32
128 rdf:type schema:PublicationVolume
129 N82e3defddaa74f92be8f76e555b51c5c rdf:first sg:person.016236616374.52
130 rdf:rest rdf:nil
131 N88ad13f03dff43dcbacbea9b34350c34 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Elasticity Imaging Techniques
133 rdf:type schema:DefinedTerm
134 N89f047a4c3294633991a2d203be3007c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Carcinoma, Hepatocellular
136 rdf:type schema:DefinedTerm
137 N9609bbf6445545d09e5dc414efb476e6 schema:name dimensions_id
138 schema:value pub.1145465349
139 rdf:type schema:PropertyValue
140 Na071122d1c0846c898a1b4e467692e25 rdf:first N5fbc7d537fae4a56bc0169fb7ca47c47
141 rdf:rest N5e33f78ced6843e3a26ebc1aad982f7b
142 Na41230cf7ee34315b589474f96a8bc93 rdf:first sg:person.01042251410.25
143 rdf:rest N32704a942a46425388a3345610ceca1e
144 Na6b2bcc2d419449d9517d79f162c1ec3 schema:name doi
145 schema:value 10.1007/s00330-022-08578-w
146 rdf:type schema:PropertyValue
147 Nc512cf30fe84471ead39fcf2c326d8ff rdf:first sg:person.01300722224.12
148 rdf:rest N1edb8e138b544d33b144d3695973ce6b
149 Ne06fcb93bff84dd48073854bd351ceba schema:issueNumber 7
150 rdf:type schema:PublicationIssue
151 Ne13b5d7bd4d249e89aaa9346d3aa483d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Humans
153 rdf:type schema:DefinedTerm
154 Nfc032037a04344499e5c57c767850bcf rdf:first sg:person.0634643630.59
155 rdf:rest N82e3defddaa74f92be8f76e555b51c5c
156 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
157 schema:name Medical and Health Sciences
158 rdf:type schema:DefinedTerm
159 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
160 schema:name Oncology and Carcinogenesis
161 rdf:type schema:DefinedTerm
162 sg:grant.8633027 http://pending.schema.org/fundedItem sg:pub.10.1007/s00330-022-08578-w
163 rdf:type schema:MonetaryGrant
164 sg:journal.1289120 schema:issn 0938-7994
165 1432-1084
166 schema:name European Radiology
167 schema:publisher Springer Nature
168 rdf:type schema:Periodical
169 sg:person.010177166473.94 schema:affiliation grid-institutes:grid.12981.33
170 schema:familyName Guo
171 schema:givenName Ning
172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010177166473.94
173 rdf:type schema:Person
174 sg:person.01023412627.52 schema:affiliation grid-institutes:grid.66875.3a
175 schema:familyName Chen
176 schema:givenName Jun
177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01023412627.52
178 rdf:type schema:Person
179 sg:person.01042251410.25 schema:affiliation grid-institutes:grid.66875.3a
180 schema:familyName Yin
181 schema:givenName Meng
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042251410.25
183 rdf:type schema:Person
184 sg:person.011755534243.57 schema:affiliation grid-institutes:grid.12981.33
185 schema:familyName Zhang
186 schema:givenName Linqi
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011755534243.57
188 rdf:type schema:Person
189 sg:person.01204263721.25 schema:affiliation grid-institutes:grid.66875.3a
190 schema:familyName Yin
191 schema:givenName Ziying
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204263721.25
193 rdf:type schema:Person
194 sg:person.01300722224.12 schema:affiliation grid-institutes:grid.12981.33
195 schema:familyName Hu
196 schema:givenName Bing
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300722224.12
198 rdf:type schema:Person
199 sg:person.015234231201.48 schema:affiliation grid-institutes:grid.12981.33
200 schema:familyName Li
201 schema:givenName Mengsi
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015234231201.48
203 rdf:type schema:Person
204 sg:person.016236616374.52 schema:affiliation grid-institutes:grid.12981.33
205 schema:familyName Wang
206 schema:givenName Jin
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016236616374.52
208 rdf:type schema:Person
209 sg:person.016516604701.16 schema:affiliation grid-institutes:grid.12981.33
210 schema:familyName Zhu
211 schema:givenName Jie
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016516604701.16
213 rdf:type schema:Person
214 sg:person.0634643630.59 schema:affiliation grid-institutes:grid.66875.3a
215 schema:familyName Ehman
216 schema:givenName Richard L.
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634643630.59
218 rdf:type schema:Person
219 sg:pub.10.1007/s00261-018-1646-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104292101
220 https://doi.org/10.1007/s00261-018-1646-5
221 rdf:type schema:CreativeWork
222 sg:pub.10.1007/s00261-020-02656-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1129604937
223 https://doi.org/10.1007/s00261-020-02656-7
224 rdf:type schema:CreativeWork
225 sg:pub.10.1007/s00330-012-2474-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015353362
226 https://doi.org/10.1007/s00330-012-2474-6
227 rdf:type schema:CreativeWork
228 sg:pub.10.1007/s00330-021-07918-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1137196787
229 https://doi.org/10.1007/s00330-021-07918-6
230 rdf:type schema:CreativeWork
231 sg:pub.10.1007/s00432-016-2286-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011160420
232 https://doi.org/10.1007/s00432-016-2286-1
233 rdf:type schema:CreativeWork
234 sg:pub.10.1007/s11604-019-00817-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111893579
235 https://doi.org/10.1007/s11604-019-00817-3
236 rdf:type schema:CreativeWork
237 sg:pub.10.1038/ajg.2016.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016162025
238 https://doi.org/10.1038/ajg.2016.220
239 rdf:type schema:CreativeWork
240 sg:pub.10.1038/ajg.2016.65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030586117
241 https://doi.org/10.1038/ajg.2016.65
242 rdf:type schema:CreativeWork
243 grid-institutes:grid.12981.33 schema:alternateName Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People’s Republic of China
244 schema:name Department of Radiology, the Third Affiliated Hospital, Sun Yat-Sen University (SYSU), No 600, Tianhe Road, 510630, Guangzhou, Guangdong, People’s Republic of China
245 rdf:type schema:Organization
246 grid-institutes:grid.66875.3a schema:alternateName Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
247 schema:name Department of Radiology, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN, USA
248 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...