Reduced-iodine-dose dual-energy coronary CT angiography: qualitative and quantitative comparison between virtual monochromatic and polychromatic CT images View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2021-03-19

AUTHORS

David C. Rotzinger, Salim A. Si-Mohamed, Jérôme Yerly, Sara Boccalini, Fabio Becce, Loïc Boussel, Reto A. Meuli, Salah D. Qanadli, Philippe C. Douek

ABSTRACT

ObjectivesTo quantitatively evaluate the impact of virtual monochromatic images (VMI) on reduced-iodine-dose dual-energy coronary computed tomography angiography (CCTA) in terms of coronary lumen segmentation in vitro, and secondly to assess the image quality in vivo, compared with conventional CT obtained with regular iodine dose.Materials and methodsA phantom simulating regular and reduced iodine injection was used to determine the accuracy and precision of lumen area segmentation for various VMI energy levels. We retrospectively included 203 patients from December 2017 to August 2018 (mean age, 51.7 ± 16.8 years) who underwent CCTA using either standard (group A, n = 103) or reduced (group B, n = 100) iodine doses. Conventional images (group A) were qualitatively and quantitatively compared with 55-keV VMI (group B). We recorded the location of venous catheters.ResultsIn vitro, VMI outperformed conventional CT, with a segmentation accuracy of 0.998 vs. 1.684 mm2, respectively (p < 0.001), and a precision of 0.982 vs. 1.229 mm2, respectively (p < 0.001), in simulated overweight adult subjects. In vivo, the rate of diagnostic CCTA in groups A and B was 88.4% (n = 91/103) vs. 89% (n = 89/100), respectively, and noninferiority of protocol B was inferred. Contrast-to-noise ratios (CNR) of lumen versus fat and muscle were higher in group B (p < 0.001) and comparable for lumen versus calcium (p = 0.423). Venous catheters were more often placed on the forearm or hand in group B (p < 0.001).ConclusionIn vitro, low-keV VMI improve vessel area segmentation. In vivo, low-keV VMI allows for a 40% iodine dose and injection rate reduction while maintaining diagnostic image quality and improves the CNR between lumen versus fat and muscle.Key Points• Dual-energy coronary CT angiography is becoming increasingly available and might help improve patient management.• Compared with regular-iodine-dose coronary CT angiography, reduced-iodine-dose dual-energy CT with low-keV monochromatic image reconstructions performed better in phantom-based vessel cross-sectional segmentation and proved to be noninferior in vivo.• Patients receiving reduced-iodine-dose dual-energy coronary CT angiography often had the venous catheter placed on the forearm or wrist without compromising image quality. More... »

PAGES

7132-7142

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-021-07809-w

DOI

http://dx.doi.org/10.1007/s00330-021-07809-w

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1136528171

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/33740093


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computed Tomography Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Dose-Response Relationship, Drug", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iodine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiographic Image Interpretation, Computer-Assisted", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiography, Dual-Energy Scanned Projection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Signal-To-Noise Ratio", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, X-Ray Computed", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.9851.5", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, Division of Cardiothoracic and Vascular Imaging, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland", 
            "Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rotzinger", 
        "givenName": "David C.", 
        "id": "sg:person.01145600560.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145600560.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.15399.37", 
          "name": [
            "Radiology Department, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France", 
            "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Si-Mohamed", 
        "givenName": "Salim A.", 
        "id": "sg:person.01010056261.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010056261.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, Center for Biomedical Imaging (CIBM), Lausanne University Hospital (CHUV), Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8515.9", 
          "name": [
            "Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland", 
            "Department of Diagnostic and Interventional Radiology, Center for Biomedical Imaging (CIBM), Lausanne University Hospital (CHUV), Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yerly", 
        "givenName": "J\u00e9r\u00f4me", 
        "id": "sg:person.013024660511.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013024660511.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.15399.37", 
          "name": [
            "Radiology Department, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France", 
            "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boccalini", 
        "givenName": "Sara", 
        "id": "sg:person.010475754223.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475754223.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8515.9", 
          "name": [
            "Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland", 
            "Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Becce", 
        "givenName": "Fabio", 
        "id": "sg:person.0753711663.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753711663.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.15399.37", 
          "name": [
            "Radiology Department, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France", 
            "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boussel", 
        "givenName": "Lo\u00efc", 
        "id": "sg:person.01113450041.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113450041.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.8515.9", 
          "name": [
            "Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland", 
            "Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meuli", 
        "givenName": "Reto A.", 
        "id": "sg:person.0752552617.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752552617.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.9851.5", 
          "name": [
            "Department of Diagnostic and Interventional Radiology, Division of Cardiothoracic and Vascular Imaging, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland", 
            "Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qanadli", 
        "givenName": "Salah D.", 
        "id": "sg:person.0665540063.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540063.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France", 
          "id": "http://www.grid.ac/institutes/grid.15399.37", 
          "name": [
            "Radiology Department, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France", 
            "University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Douek", 
        "givenName": "Philippe C.", 
        "id": "sg:person.01211025760.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211025760.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-018-5308-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101243031", 
          "https://doi.org/10.1007/s00330-018-5308-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4437-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049861943", 
          "https://doi.org/10.1007/s00330-016-4437-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-018-1329-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101374448", 
          "https://doi.org/10.1007/s10554-018-1329-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-011-9848-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020030597", 
          "https://doi.org/10.1007/s10554-011-9848-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s12968-019-0521-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111954566", 
          "https://doi.org/10.1186/s12968-019-0521-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-018-36045-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110346463", 
          "https://doi.org/10.1038/s41598-018-36045-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10554-018-1452-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106893994", 
          "https://doi.org/10.1007/s10554-018-1452-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-03-19", 
    "datePublishedReg": "2021-03-19", 
    "description": "ObjectivesTo quantitatively evaluate the impact of virtual monochromatic images (VMI) on reduced-iodine-dose dual-energy coronary computed tomography angiography (CCTA) in terms of coronary lumen segmentation in vitro, and secondly to assess the image quality in vivo, compared with conventional CT obtained with regular iodine dose.Materials and methodsA phantom simulating regular and reduced iodine injection was used to determine the accuracy and precision of lumen area segmentation for various VMI energy levels. We retrospectively included 203 patients from December 2017 to August 2018 (mean age, 51.7 \u00b1 16.8 years) who underwent CCTA using either standard (group A, n = 103) or reduced (group B, n = 100) iodine doses. Conventional images (group A) were qualitatively and quantitatively compared with 55-keV VMI (group B). We recorded the location of venous catheters.ResultsIn vitro, VMI outperformed conventional CT, with a segmentation accuracy of 0.998 vs. 1.684 mm2, respectively (p < 0.001), and a precision of 0.982 vs. 1.229 mm2, respectively (p < 0.001), in simulated overweight adult subjects. In vivo, the rate of diagnostic CCTA in groups A and B was 88.4% (n = 91/103) vs. 89% (n = 89/100), respectively, and noninferiority of protocol B was inferred. Contrast-to-noise ratios (CNR) of lumen versus fat and muscle were higher in group B (p < 0.001) and comparable for lumen versus calcium (p = 0.423). Venous catheters were more often placed on the forearm or hand in group B (p < 0.001).ConclusionIn vitro, low-keV VMI improve vessel area segmentation. In vivo, low-keV VMI allows for a 40% iodine dose and injection rate reduction while maintaining diagnostic image quality and improves the CNR between lumen versus fat and muscle.Key Points\u2022 Dual-energy coronary CT angiography is becoming increasingly available and might help improve patient management.\u2022 Compared with regular-iodine-dose coronary CT angiography, reduced-iodine-dose dual-energy CT with low-keV monochromatic image reconstructions performed better in phantom-based vessel cross-sectional segmentation and proved to be noninferior in vivo.\u2022 Patients receiving reduced-iodine-dose dual-energy coronary CT angiography often had the venous catheter placed on the forearm or wrist without compromising image quality.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-021-07809-w", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "coronary CT angiography", 
      "keV virtual monochromatic images", 
      "dual-energy coronary CT angiography", 
      "venous catheters", 
      "CT angiography", 
      "iodine dose", 
      "group B", 
      "overweight adult subjects", 
      "conventional CT", 
      "virtual monochromatic images", 
      "diagnostic CCTA", 
      "diagnostic image quality", 
      "tomography angiography", 
      "patient management", 
      "group A", 
      "protocol B", 
      "angiography", 
      "iodine doses", 
      "adult subjects", 
      "catheter", 
      "dual-energy CT", 
      "methodsA phantom", 
      "CT", 
      "patients", 
      "monochromatic image reconstructions", 
      "CCTA", 
      "vivo", 
      "forearm", 
      "dose", 
      "lumen", 
      "cross-sectional segmentation", 
      "muscle", 
      "iodine injection", 
      "VMI energy levels", 
      "CT images", 
      "fat", 
      "coronary lumen segmentation", 
      "coronaries", 
      "noninferiority", 
      "ConclusionIn", 
      "image quality", 
      "ObjectivesTo", 
      "ResultsIn", 
      "doses", 
      "wrist", 
      "injection", 
      "vitro", 
      "rate reduction", 
      "subjects", 
      "calcium", 
      "polychromatic CT images", 
      "quality", 
      "conventional images", 
      "management", 
      "levels", 
      "CNR", 
      "rate", 
      "contrast", 
      "reduction", 
      "reconstruction", 
      "monochromatic images", 
      "lumen segmentation", 
      "mm2", 
      "ratio", 
      "standards", 
      "impact", 
      "hand", 
      "comparison", 
      "injection rate reductions", 
      "images", 
      "phantom", 
      "location", 
      "quantitative comparison", 
      "accuracy", 
      "materials", 
      "area segmentation", 
      "terms", 
      "precision", 
      "noise ratio", 
      "segmentation", 
      "image reconstruction", 
      "segmentation accuracy", 
      "energy levels"
    ], 
    "name": "Reduced-iodine-dose dual-energy coronary CT angiography: qualitative and quantitative comparison between virtual monochromatic and polychromatic CT images", 
    "pagination": "7132-7142", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1136528171"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-021-07809-w"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "33740093"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-021-07809-w", 
      "https://app.dimensions.ai/details/publication/pub.1136528171"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_898.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-021-07809-w"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-021-07809-w'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-021-07809-w'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-021-07809-w'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-021-07809-w'


 

This table displays all metadata directly associated to this object as RDF triples.

291 TRIPLES      21 PREDICATES      128 URIs      113 LITERALS      20 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-021-07809-w schema:about N089fbc8cd31b4f1084957105e37c6501
2 N521651a463654687b695dc27f790043b
3 N59e004fe679042348881f7899363aabb
4 N66f14247a80e43908f6330e40f93d423
5 N6ece9ab6c14545078c383a7e2ee746b8
6 N6ed9124b5cfb47c8a8df819b47410a21
7 N8b2cb3729b224ba2a6242679a0941036
8 N94a32c9c2d694f17ad278a18259c37c0
9 Nae7a06f9539b45419f024d16f880a524
10 Ncb31eaa3a1a84eb0826e62f14a972979
11 Nd2b9cff747974ef69f3670f338361389
12 Nd55ca4fe9cd7411ba7ff3437dd17151d
13 Nf2d0a564967f4655a1dcab0fd175fd68
14 anzsrc-for:11
15 anzsrc-for:1103
16 schema:author Ne5a084b8f85f4ff6a8989214ebf06324
17 schema:citation sg:pub.10.1007/s00330-016-4437-9
18 sg:pub.10.1007/s00330-018-5308-3
19 sg:pub.10.1007/s10554-011-9848-8
20 sg:pub.10.1007/s10554-018-1329-x
21 sg:pub.10.1007/s10554-018-1452-8
22 sg:pub.10.1038/s41598-018-36045-4
23 sg:pub.10.1186/s12968-019-0521-z
24 schema:datePublished 2021-03-19
25 schema:datePublishedReg 2021-03-19
26 schema:description ObjectivesTo quantitatively evaluate the impact of virtual monochromatic images (VMI) on reduced-iodine-dose dual-energy coronary computed tomography angiography (CCTA) in terms of coronary lumen segmentation in vitro, and secondly to assess the image quality in vivo, compared with conventional CT obtained with regular iodine dose.Materials and methodsA phantom simulating regular and reduced iodine injection was used to determine the accuracy and precision of lumen area segmentation for various VMI energy levels. We retrospectively included 203 patients from December 2017 to August 2018 (mean age, 51.7 ± 16.8 years) who underwent CCTA using either standard (group A, n = 103) or reduced (group B, n = 100) iodine doses. Conventional images (group A) were qualitatively and quantitatively compared with 55-keV VMI (group B). We recorded the location of venous catheters.ResultsIn vitro, VMI outperformed conventional CT, with a segmentation accuracy of 0.998 vs. 1.684 mm2, respectively (p < 0.001), and a precision of 0.982 vs. 1.229 mm2, respectively (p < 0.001), in simulated overweight adult subjects. In vivo, the rate of diagnostic CCTA in groups A and B was 88.4% (n = 91/103) vs. 89% (n = 89/100), respectively, and noninferiority of protocol B was inferred. Contrast-to-noise ratios (CNR) of lumen versus fat and muscle were higher in group B (p < 0.001) and comparable for lumen versus calcium (p = 0.423). Venous catheters were more often placed on the forearm or hand in group B (p < 0.001).ConclusionIn vitro, low-keV VMI improve vessel area segmentation. In vivo, low-keV VMI allows for a 40% iodine dose and injection rate reduction while maintaining diagnostic image quality and improves the CNR between lumen versus fat and muscle.Key Points• Dual-energy coronary CT angiography is becoming increasingly available and might help improve patient management.• Compared with regular-iodine-dose coronary CT angiography, reduced-iodine-dose dual-energy CT with low-keV monochromatic image reconstructions performed better in phantom-based vessel cross-sectional segmentation and proved to be noninferior in vivo.• Patients receiving reduced-iodine-dose dual-energy coronary CT angiography often had the venous catheter placed on the forearm or wrist without compromising image quality.
27 schema:genre article
28 schema:isAccessibleForFree true
29 schema:isPartOf N22e611813ba045ef9888422cff21f7ae
30 Nea4a8555fdbd49a1ab96e3e6228deb08
31 sg:journal.1289120
32 schema:keywords CCTA
33 CNR
34 CT
35 CT angiography
36 CT images
37 ConclusionIn
38 ObjectivesTo
39 ResultsIn
40 VMI energy levels
41 accuracy
42 adult subjects
43 angiography
44 area segmentation
45 calcium
46 catheter
47 comparison
48 contrast
49 conventional CT
50 conventional images
51 coronaries
52 coronary CT angiography
53 coronary lumen segmentation
54 cross-sectional segmentation
55 diagnostic CCTA
56 diagnostic image quality
57 dose
58 doses
59 dual-energy CT
60 dual-energy coronary CT angiography
61 energy levels
62 fat
63 forearm
64 group A
65 group B
66 hand
67 image quality
68 image reconstruction
69 images
70 impact
71 injection
72 injection rate reductions
73 iodine dose
74 iodine doses
75 iodine injection
76 keV virtual monochromatic images
77 levels
78 location
79 lumen
80 lumen segmentation
81 management
82 materials
83 methodsA phantom
84 mm2
85 monochromatic image reconstructions
86 monochromatic images
87 muscle
88 noise ratio
89 noninferiority
90 overweight adult subjects
91 patient management
92 patients
93 phantom
94 polychromatic CT images
95 precision
96 protocol B
97 quality
98 quantitative comparison
99 rate
100 rate reduction
101 ratio
102 reconstruction
103 reduction
104 segmentation
105 segmentation accuracy
106 standards
107 subjects
108 terms
109 tomography angiography
110 venous catheters
111 virtual monochromatic images
112 vitro
113 vivo
114 wrist
115 schema:name Reduced-iodine-dose dual-energy coronary CT angiography: qualitative and quantitative comparison between virtual monochromatic and polychromatic CT images
116 schema:pagination 7132-7142
117 schema:productId N326e9ccbcaaf4e929612b9ebbabfacd2
118 N923d3afab62b4e87aecb3e0b4121e664
119 Nca3151dfab0f4c60b7e6ce0d7d8db93b
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1136528171
121 https://doi.org/10.1007/s00330-021-07809-w
122 schema:sdDatePublished 2022-12-01T06:42
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N9f80eade024e4fe4b0d7e019a740d883
125 schema:url https://doi.org/10.1007/s00330-021-07809-w
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N0803942b42b24d899b3b8c2f26e4501d rdf:first sg:person.01211025760.77
130 rdf:rest rdf:nil
131 N089fbc8cd31b4f1084957105e37c6501 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Middle Aged
133 rdf:type schema:DefinedTerm
134 N0fac1c49595c40d38cdf8a5e07b43ab9 rdf:first sg:person.013024660511.53
135 rdf:rest Nab7d0752c09c475db93572fabb114339
136 N22e611813ba045ef9888422cff21f7ae schema:volumeNumber 31
137 rdf:type schema:PublicationVolume
138 N326e9ccbcaaf4e929612b9ebbabfacd2 schema:name dimensions_id
139 schema:value pub.1136528171
140 rdf:type schema:PropertyValue
141 N521651a463654687b695dc27f790043b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Dose-Response Relationship, Drug
143 rdf:type schema:DefinedTerm
144 N59e004fe679042348881f7899363aabb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
145 schema:name Radiographic Image Interpretation, Computer-Assisted
146 rdf:type schema:DefinedTerm
147 N66f14247a80e43908f6330e40f93d423 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Aged
149 rdf:type schema:DefinedTerm
150 N6ece9ab6c14545078c383a7e2ee746b8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Tomography, X-Ray Computed
152 rdf:type schema:DefinedTerm
153 N6ed9124b5cfb47c8a8df819b47410a21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Adult
155 rdf:type schema:DefinedTerm
156 N73e5882fd6094862895a1408e3c2136b rdf:first sg:person.0665540063.53
157 rdf:rest N0803942b42b24d899b3b8c2f26e4501d
158 N8b2cb3729b224ba2a6242679a0941036 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Iodine
160 rdf:type schema:DefinedTerm
161 N923d3afab62b4e87aecb3e0b4121e664 schema:name pubmed_id
162 schema:value 33740093
163 rdf:type schema:PropertyValue
164 N94a32c9c2d694f17ad278a18259c37c0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
165 schema:name Humans
166 rdf:type schema:DefinedTerm
167 N9f80eade024e4fe4b0d7e019a740d883 schema:name Springer Nature - SN SciGraph project
168 rdf:type schema:Organization
169 Nab7d0752c09c475db93572fabb114339 rdf:first sg:person.010475754223.32
170 rdf:rest Nb4e63c8f5fdb4c5bb34341a69fd0d7c8
171 Nae7a06f9539b45419f024d16f880a524 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Signal-To-Noise Ratio
173 rdf:type schema:DefinedTerm
174 Nb4e63c8f5fdb4c5bb34341a69fd0d7c8 rdf:first sg:person.0753711663.82
175 rdf:rest Nc0f5368909f4449d94dc1ebcd52557e5
176 Nc0f5368909f4449d94dc1ebcd52557e5 rdf:first sg:person.01113450041.51
177 rdf:rest Ne3c620c184154abbbdf5dc1ffc49e306
178 Nc7b4514cf35e4971bf6de0325d560b05 rdf:first sg:person.01010056261.39
179 rdf:rest N0fac1c49595c40d38cdf8a5e07b43ab9
180 Nca3151dfab0f4c60b7e6ce0d7d8db93b schema:name doi
181 schema:value 10.1007/s00330-021-07809-w
182 rdf:type schema:PropertyValue
183 Ncb31eaa3a1a84eb0826e62f14a972979 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
184 schema:name Retrospective Studies
185 rdf:type schema:DefinedTerm
186 Nd2b9cff747974ef69f3670f338361389 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Radiography, Dual-Energy Scanned Projection
188 rdf:type schema:DefinedTerm
189 Nd55ca4fe9cd7411ba7ff3437dd17151d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
190 schema:name Contrast Media
191 rdf:type schema:DefinedTerm
192 Ne3c620c184154abbbdf5dc1ffc49e306 rdf:first sg:person.0752552617.39
193 rdf:rest N73e5882fd6094862895a1408e3c2136b
194 Ne5a084b8f85f4ff6a8989214ebf06324 rdf:first sg:person.01145600560.33
195 rdf:rest Nc7b4514cf35e4971bf6de0325d560b05
196 Nea4a8555fdbd49a1ab96e3e6228deb08 schema:issueNumber 9
197 rdf:type schema:PublicationIssue
198 Nf2d0a564967f4655a1dcab0fd175fd68 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
199 schema:name Computed Tomography Angiography
200 rdf:type schema:DefinedTerm
201 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
202 schema:name Medical and Health Sciences
203 rdf:type schema:DefinedTerm
204 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
205 schema:name Clinical Sciences
206 rdf:type schema:DefinedTerm
207 sg:journal.1289120 schema:issn 0938-7994
208 1432-1084
209 schema:name European Radiology
210 schema:publisher Springer Nature
211 rdf:type schema:Periodical
212 sg:person.01010056261.39 schema:affiliation grid-institutes:grid.15399.37
213 schema:familyName Si-Mohamed
214 schema:givenName Salim A.
215 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01010056261.39
216 rdf:type schema:Person
217 sg:person.010475754223.32 schema:affiliation grid-institutes:grid.15399.37
218 schema:familyName Boccalini
219 schema:givenName Sara
220 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010475754223.32
221 rdf:type schema:Person
222 sg:person.01113450041.51 schema:affiliation grid-institutes:grid.15399.37
223 schema:familyName Boussel
224 schema:givenName Loïc
225 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113450041.51
226 rdf:type schema:Person
227 sg:person.01145600560.33 schema:affiliation grid-institutes:grid.9851.5
228 schema:familyName Rotzinger
229 schema:givenName David C.
230 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01145600560.33
231 rdf:type schema:Person
232 sg:person.01211025760.77 schema:affiliation grid-institutes:grid.15399.37
233 schema:familyName Douek
234 schema:givenName Philippe C.
235 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01211025760.77
236 rdf:type schema:Person
237 sg:person.013024660511.53 schema:affiliation grid-institutes:grid.8515.9
238 schema:familyName Yerly
239 schema:givenName Jérôme
240 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013024660511.53
241 rdf:type schema:Person
242 sg:person.0665540063.53 schema:affiliation grid-institutes:grid.9851.5
243 schema:familyName Qanadli
244 schema:givenName Salah D.
245 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0665540063.53
246 rdf:type schema:Person
247 sg:person.0752552617.39 schema:affiliation grid-institutes:grid.8515.9
248 schema:familyName Meuli
249 schema:givenName Reto A.
250 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752552617.39
251 rdf:type schema:Person
252 sg:person.0753711663.82 schema:affiliation grid-institutes:grid.8515.9
253 schema:familyName Becce
254 schema:givenName Fabio
255 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0753711663.82
256 rdf:type schema:Person
257 sg:pub.10.1007/s00330-016-4437-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049861943
258 https://doi.org/10.1007/s00330-016-4437-9
259 rdf:type schema:CreativeWork
260 sg:pub.10.1007/s00330-018-5308-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101243031
261 https://doi.org/10.1007/s00330-018-5308-3
262 rdf:type schema:CreativeWork
263 sg:pub.10.1007/s10554-011-9848-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020030597
264 https://doi.org/10.1007/s10554-011-9848-8
265 rdf:type schema:CreativeWork
266 sg:pub.10.1007/s10554-018-1329-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101374448
267 https://doi.org/10.1007/s10554-018-1329-x
268 rdf:type schema:CreativeWork
269 sg:pub.10.1007/s10554-018-1452-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106893994
270 https://doi.org/10.1007/s10554-018-1452-8
271 rdf:type schema:CreativeWork
272 sg:pub.10.1038/s41598-018-36045-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110346463
273 https://doi.org/10.1038/s41598-018-36045-4
274 rdf:type schema:CreativeWork
275 sg:pub.10.1186/s12968-019-0521-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1111954566
276 https://doi.org/10.1186/s12968-019-0521-z
277 rdf:type schema:CreativeWork
278 grid-institutes:grid.15399.37 schema:alternateName University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France
279 schema:name Radiology Department, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500, Bron, France
280 University Claude Bernard Lyon 1, CREATIS, CNRS UMR 5220, INSERM U1206, INSA-Lyon, Lyon, France
281 rdf:type schema:Organization
282 grid-institutes:grid.8515.9 schema:alternateName Department of Diagnostic and Interventional Radiology, Center for Biomedical Imaging (CIBM), Lausanne University Hospital (CHUV), Lausanne, Switzerland
283 Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
284 schema:name Department of Diagnostic and Interventional Radiology, Center for Biomedical Imaging (CIBM), Lausanne University Hospital (CHUV), Lausanne, Switzerland
285 Department of Diagnostic and Interventional Radiology, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
286 Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
287 rdf:type schema:Organization
288 grid-institutes:grid.9851.5 schema:alternateName Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
289 schema:name Department of Diagnostic and Interventional Radiology, Division of Cardiothoracic and Vascular Imaging, Lausanne University Hospital (CHUV), Rue du Bugnon 46, 1011, Lausanne, Switzerland
290 Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), Lausanne, Switzerland
291 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...