Automated MRI perfusion-diffusion mismatch estimation may be significantly different in individual patients when using different software packages View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-08-21

AUTHORS

Hannes Deutschmann, Nicole Hinteregger, Ulrike Wießpeiner, Markus Kneihsl, Simon Fandler-Höfler, Manuela Michenthaler, Christian Enzinger, Eva Hassler, Stefan Leber, Gernot Reishofer

ABSTRACT

ObjectiveTo compare two established software applications in terms of apparent diffusion coefficient (ADC) lesion volumes, volume of critically hypoperfused brain tissue, and calculated volumes of perfusion-diffusion mismatch in brain MRI of patients with acute ischemic stroke.MethodsBrain MRI examinations of 81 patients with acute stroke due to large vessel occlusion of the anterior circulation were analyzed. The volume of hypoperfused brain tissue, ADC volume, and the volume of perfusion-diffusion mismatch were calculated automatically with two different software packages. The calculated parameters were compared quantitatively using formal statistics.ResultsSignificant difference was found for the volume of hypoperfused tissue (median 91.0 ml vs. 102.2 ml; p < 0.05) and the ADC volume (median 30.0 ml vs. 23.9 ml; p < 0.05) between different software packages. The volume of the perfusion-diffusion mismatch differed significantly (median 47.0 ml vs. 67.2 ml; p < 0.05). Evaluation of the results on a single-subject basis revealed a mean absolute difference of 20.5 ml for hypoperfused tissue, 10.8 ml for ADC volumes, and 27.6 ml for mismatch volumes, respectively. Application of the DEFUSE 3 threshold of 70 ml infarction core would have resulted in dissenting treatment decisions in 6/81 (7.4%) patients.ConclusionVolume segmentation in different software products may lead to significantly different results in the individual patient and may thus seriously influence the decision for or against mechanical thrombectomy.Key Points• Automated calculation of MRI perfusion-diffusion mismatch helps clinicians to apply inclusion and exclusion criteria derived from randomized trials.• Infarct volume segmentation plays a crucial role and lead to significantly different result for different computer programs.• Perfusion-diffusion mismatch estimation from different computer programs may influence the decision for or against mechanical thrombectomy. More... »

PAGES

658-665

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-020-07150-8

DOI

http://dx.doi.org/10.1007/s00330-020-07150-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1130242663

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32822053


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Brain Ischemia", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cerebrovascular Circulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Diffusion Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Perfusion", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Software", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Stroke", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deutschmann", 
        "givenName": "Hannes", 
        "id": "sg:person.0627672706.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627672706.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hinteregger", 
        "givenName": "Nicole", 
        "id": "sg:person.014572120733.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572120733.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wie\u00dfpeiner", 
        "givenName": "Ulrike", 
        "id": "sg:person.0642261463.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642261463.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kneihsl", 
        "givenName": "Markus", 
        "id": "sg:person.01000066375.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000066375.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fandler-H\u00f6fler", 
        "givenName": "Simon", 
        "id": "sg:person.010066415137.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010066415137.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Michenthaler", 
        "givenName": "Manuela", 
        "id": "sg:person.014116131343.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116131343.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
            "Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enzinger", 
        "givenName": "Christian", 
        "id": "sg:person.0617665673.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617665673.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hassler", 
        "givenName": "Eva", 
        "id": "sg:person.0606545206.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606545206.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leber", 
        "givenName": "Stefan", 
        "id": "sg:person.010206057507.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206057507.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria", 
          "id": "http://www.grid.ac/institutes/grid.11598.34", 
          "name": [
            "Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Reishofer", 
        "givenName": "Gernot", 
        "id": "sg:person.01014426551.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014426551.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-019-06062-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1112944205", 
          "https://doi.org/10.1007/s00330-019-06062-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-08-21", 
    "datePublishedReg": "2020-08-21", 
    "description": "ObjectiveTo compare two established software applications in terms of apparent diffusion coefficient (ADC) lesion volumes, volume of critically hypoperfused brain tissue, and calculated volumes of perfusion-diffusion mismatch in brain MRI of patients with acute ischemic stroke.MethodsBrain MRI examinations of 81 patients with acute stroke due to large vessel occlusion of the anterior circulation were analyzed. The volume of hypoperfused brain tissue, ADC volume, and the volume of perfusion-diffusion mismatch were calculated automatically with two different software packages. The calculated parameters were compared quantitatively using formal statistics.ResultsSignificant difference was found for the volume of hypoperfused tissue (median 91.0\u00a0ml vs. 102.2\u00a0ml; p\u2009<\u20090.05) and the ADC volume (median 30.0\u00a0ml vs. 23.9\u00a0ml; p\u2009<\u20090.05) between different software packages. The volume of the perfusion-diffusion mismatch differed significantly (median 47.0\u00a0ml vs. 67.2\u00a0ml; p\u2009<\u20090.05). Evaluation of the results on a single-subject basis revealed a mean absolute difference of 20.5\u00a0ml for hypoperfused tissue, 10.8\u00a0ml for ADC volumes, and 27.6\u00a0ml for mismatch volumes, respectively. Application of the DEFUSE 3 threshold of 70\u00a0ml infarction core would have resulted in dissenting treatment decisions in 6/81 (7.4%) patients.ConclusionVolume segmentation in different software products may lead to significantly different results in the individual patient and may thus seriously influence the decision for or against mechanical thrombectomy.Key Points\u2022 Automated calculation of MRI perfusion-diffusion mismatch helps clinicians to apply inclusion and exclusion criteria derived from randomized trials.\u2022 Infarct volume segmentation plays a crucial role and lead to significantly different result for different computer programs.\u2022 Perfusion-diffusion mismatch estimation from different computer programs may influence the decision for or against mechanical thrombectomy.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-020-07150-8", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "keywords": [
      "perfusion-diffusion mismatch", 
      "ADC volumes", 
      "mechanical thrombectomy", 
      "individual patients", 
      "hypoperfused tissue", 
      "brain tissue", 
      "apparent diffusion coefficient lesion volume", 
      "acute ischemic stroke", 
      "large vessel occlusion", 
      "ischemic stroke", 
      "acute stroke", 
      "anterior circulation", 
      "randomized trials", 
      "vessel occlusion", 
      "lesion volume", 
      "treatment decisions", 
      "MRI examinations", 
      "brain MRI", 
      "exclusion criteria", 
      "mismatch volume", 
      "infarction core", 
      "patients", 
      "ResultsSignificant differences", 
      "single subject basis", 
      "thrombectomy", 
      "stroke", 
      "tissue", 
      "mean absolute difference", 
      "absolute difference", 
      "ObjectiveTo", 
      "clinicians", 
      "MRI", 
      "trials", 
      "occlusion", 
      "volume", 
      "differences", 
      "crucial role", 
      "examination", 
      "circulation", 
      "program", 
      "different results", 
      "volume segmentation", 
      "criteria", 
      "evaluation", 
      "role", 
      "results", 
      "decisions", 
      "threshold", 
      "inclusion", 
      "different software packages", 
      "formal statistics", 
      "statistics", 
      "mismatch", 
      "basis", 
      "package", 
      "products", 
      "parameters", 
      "terms", 
      "software package", 
      "computer program", 
      "different software products", 
      "different computer programs", 
      "applications", 
      "software products", 
      "software applications", 
      "estimation", 
      "mismatch estimation", 
      "segmentation", 
      "core", 
      "calculations"
    ], 
    "name": "Automated MRI perfusion-diffusion mismatch estimation may be significantly different in individual patients when using different software packages", 
    "pagination": "658-665", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1130242663"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-020-07150-8"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32822053"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-020-07150-8", 
      "https://app.dimensions.ai/details/publication/pub.1130242663"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-06-01T22:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_847.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-020-07150-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-07150-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-07150-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-07150-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-07150-8'


 

This table displays all metadata directly associated to this object as RDF triples.

233 TRIPLES      22 PREDICATES      105 URIs      96 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-020-07150-8 schema:about N09c167ef0b564dd1b5d5e3c8a9b2a15b
2 N0f866eadffe54c9eaead0cfb91aa6da5
3 N1be86b95a23c4543bde7d03db91b2b3a
4 N3f97e21268354528883457b291c38190
5 N6739a3c460d7424a9678d3844ff76bee
6 N78388fe547d04f66a99d484b4aecdd82
7 Nb0c8d04cc4bb4c6ebe48e0ea225498ba
8 Ne0393e3ba4f743cda6ce42d86367bc30
9 anzsrc-for:11
10 anzsrc-for:1109
11 schema:author Ne231e352a621463fab0630d03c0b6b87
12 schema:citation sg:pub.10.1007/s00330-019-06062-6
13 schema:datePublished 2020-08-21
14 schema:datePublishedReg 2020-08-21
15 schema:description ObjectiveTo compare two established software applications in terms of apparent diffusion coefficient (ADC) lesion volumes, volume of critically hypoperfused brain tissue, and calculated volumes of perfusion-diffusion mismatch in brain MRI of patients with acute ischemic stroke.MethodsBrain MRI examinations of 81 patients with acute stroke due to large vessel occlusion of the anterior circulation were analyzed. The volume of hypoperfused brain tissue, ADC volume, and the volume of perfusion-diffusion mismatch were calculated automatically with two different software packages. The calculated parameters were compared quantitatively using formal statistics.ResultsSignificant difference was found for the volume of hypoperfused tissue (median 91.0 ml vs. 102.2 ml; p < 0.05) and the ADC volume (median 30.0 ml vs. 23.9 ml; p < 0.05) between different software packages. The volume of the perfusion-diffusion mismatch differed significantly (median 47.0 ml vs. 67.2 ml; p < 0.05). Evaluation of the results on a single-subject basis revealed a mean absolute difference of 20.5 ml for hypoperfused tissue, 10.8 ml for ADC volumes, and 27.6 ml for mismatch volumes, respectively. Application of the DEFUSE 3 threshold of 70 ml infarction core would have resulted in dissenting treatment decisions in 6/81 (7.4%) patients.ConclusionVolume segmentation in different software products may lead to significantly different results in the individual patient and may thus seriously influence the decision for or against mechanical thrombectomy.Key Points• Automated calculation of MRI perfusion-diffusion mismatch helps clinicians to apply inclusion and exclusion criteria derived from randomized trials.• Infarct volume segmentation plays a crucial role and lead to significantly different result for different computer programs.• Perfusion-diffusion mismatch estimation from different computer programs may influence the decision for or against mechanical thrombectomy.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree true
19 schema:isPartOf N4a842635bc7f45caa37a8474cf1b0cf0
20 N9f1561431b974f5ba059cf60c4e4d017
21 sg:journal.1289120
22 schema:keywords ADC volumes
23 MRI
24 MRI examinations
25 ObjectiveTo
26 ResultsSignificant differences
27 absolute difference
28 acute ischemic stroke
29 acute stroke
30 anterior circulation
31 apparent diffusion coefficient lesion volume
32 applications
33 basis
34 brain MRI
35 brain tissue
36 calculations
37 circulation
38 clinicians
39 computer program
40 core
41 criteria
42 crucial role
43 decisions
44 differences
45 different computer programs
46 different results
47 different software packages
48 different software products
49 estimation
50 evaluation
51 examination
52 exclusion criteria
53 formal statistics
54 hypoperfused tissue
55 inclusion
56 individual patients
57 infarction core
58 ischemic stroke
59 large vessel occlusion
60 lesion volume
61 mean absolute difference
62 mechanical thrombectomy
63 mismatch
64 mismatch estimation
65 mismatch volume
66 occlusion
67 package
68 parameters
69 patients
70 perfusion-diffusion mismatch
71 products
72 program
73 randomized trials
74 results
75 role
76 segmentation
77 single subject basis
78 software applications
79 software package
80 software products
81 statistics
82 stroke
83 terms
84 threshold
85 thrombectomy
86 tissue
87 treatment decisions
88 trials
89 vessel occlusion
90 volume
91 volume segmentation
92 schema:name Automated MRI perfusion-diffusion mismatch estimation may be significantly different in individual patients when using different software packages
93 schema:pagination 658-665
94 schema:productId N8f52de95716e4e63ac3fc995d74108bf
95 Ndc14b93a40c64868a8ac43c476490cbe
96 Nf79328a9ca4f4fc89085704ecc97ccc8
97 schema:sameAs https://app.dimensions.ai/details/publication/pub.1130242663
98 https://doi.org/10.1007/s00330-020-07150-8
99 schema:sdDatePublished 2022-06-01T22:22
100 schema:sdLicense https://scigraph.springernature.com/explorer/license/
101 schema:sdPublisher Naf2c035cb65f4ed485624908d4ab71a3
102 schema:url https://doi.org/10.1007/s00330-020-07150-8
103 sgo:license sg:explorer/license/
104 sgo:sdDataset articles
105 rdf:type schema:ScholarlyArticle
106 N09c167ef0b564dd1b5d5e3c8a9b2a15b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Stroke
108 rdf:type schema:DefinedTerm
109 N0a74950c272040408bab6139d69b4afb rdf:first sg:person.014116131343.84
110 rdf:rest N72007d6ceab84a7989ec6c73db2301b4
111 N0f866eadffe54c9eaead0cfb91aa6da5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
112 schema:name Perfusion
113 rdf:type schema:DefinedTerm
114 N1be86b95a23c4543bde7d03db91b2b3a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
115 schema:name Magnetic Resonance Imaging
116 rdf:type schema:DefinedTerm
117 N2fa6f7688220489e9ec8f61cb574bcfa rdf:first sg:person.010206057507.98
118 rdf:rest N35617491b0ae45b49066e4458fc624ab
119 N35617491b0ae45b49066e4458fc624ab rdf:first sg:person.01014426551.21
120 rdf:rest rdf:nil
121 N3f97e21268354528883457b291c38190 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
122 schema:name Humans
123 rdf:type schema:DefinedTerm
124 N42f741d77f6d42b4837a87c6a746a908 rdf:first sg:person.014572120733.55
125 rdf:rest Ncb13996d09ba482eba8deca4ed103793
126 N4a842635bc7f45caa37a8474cf1b0cf0 schema:volumeNumber 31
127 rdf:type schema:PublicationVolume
128 N6739a3c460d7424a9678d3844ff76bee schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Cerebrovascular Circulation
130 rdf:type schema:DefinedTerm
131 N6ab54f57629e42fe9066b6ffc921c367 rdf:first sg:person.010066415137.46
132 rdf:rest N0a74950c272040408bab6139d69b4afb
133 N72007d6ceab84a7989ec6c73db2301b4 rdf:first sg:person.0617665673.78
134 rdf:rest Nccac070e96ed4cd4999b497be7c0f5e2
135 N78388fe547d04f66a99d484b4aecdd82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Software
137 rdf:type schema:DefinedTerm
138 N8f52de95716e4e63ac3fc995d74108bf schema:name doi
139 schema:value 10.1007/s00330-020-07150-8
140 rdf:type schema:PropertyValue
141 N9f1561431b974f5ba059cf60c4e4d017 schema:issueNumber 2
142 rdf:type schema:PublicationIssue
143 Naf2c035cb65f4ed485624908d4ab71a3 schema:name Springer Nature - SN SciGraph project
144 rdf:type schema:Organization
145 Nb0c8d04cc4bb4c6ebe48e0ea225498ba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Diffusion Magnetic Resonance Imaging
147 rdf:type schema:DefinedTerm
148 Ncb13996d09ba482eba8deca4ed103793 rdf:first sg:person.0642261463.27
149 rdf:rest Nd4448b36f3d841b0a669dd7419d53e0b
150 Nccac070e96ed4cd4999b497be7c0f5e2 rdf:first sg:person.0606545206.02
151 rdf:rest N2fa6f7688220489e9ec8f61cb574bcfa
152 Nd4448b36f3d841b0a669dd7419d53e0b rdf:first sg:person.01000066375.20
153 rdf:rest N6ab54f57629e42fe9066b6ffc921c367
154 Ndc14b93a40c64868a8ac43c476490cbe schema:name pubmed_id
155 schema:value 32822053
156 rdf:type schema:PropertyValue
157 Ne0393e3ba4f743cda6ce42d86367bc30 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
158 schema:name Brain Ischemia
159 rdf:type schema:DefinedTerm
160 Ne231e352a621463fab0630d03c0b6b87 rdf:first sg:person.0627672706.64
161 rdf:rest N42f741d77f6d42b4837a87c6a746a908
162 Nf79328a9ca4f4fc89085704ecc97ccc8 schema:name dimensions_id
163 schema:value pub.1130242663
164 rdf:type schema:PropertyValue
165 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
166 schema:name Medical and Health Sciences
167 rdf:type schema:DefinedTerm
168 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
169 schema:name Neurosciences
170 rdf:type schema:DefinedTerm
171 sg:journal.1289120 schema:issn 0938-7994
172 1432-1084
173 schema:name European Radiology
174 schema:publisher Springer Nature
175 rdf:type schema:Periodical
176 sg:person.01000066375.20 schema:affiliation grid-institutes:grid.11598.34
177 schema:familyName Kneihsl
178 schema:givenName Markus
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000066375.20
180 rdf:type schema:Person
181 sg:person.010066415137.46 schema:affiliation grid-institutes:grid.11598.34
182 schema:familyName Fandler-Höfler
183 schema:givenName Simon
184 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010066415137.46
185 rdf:type schema:Person
186 sg:person.01014426551.21 schema:affiliation grid-institutes:grid.11598.34
187 schema:familyName Reishofer
188 schema:givenName Gernot
189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014426551.21
190 rdf:type schema:Person
191 sg:person.010206057507.98 schema:affiliation grid-institutes:grid.11598.34
192 schema:familyName Leber
193 schema:givenName Stefan
194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206057507.98
195 rdf:type schema:Person
196 sg:person.014116131343.84 schema:affiliation grid-institutes:grid.11598.34
197 schema:familyName Michenthaler
198 schema:givenName Manuela
199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116131343.84
200 rdf:type schema:Person
201 sg:person.014572120733.55 schema:affiliation grid-institutes:grid.11598.34
202 schema:familyName Hinteregger
203 schema:givenName Nicole
204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014572120733.55
205 rdf:type schema:Person
206 sg:person.0606545206.02 schema:affiliation grid-institutes:grid.11598.34
207 schema:familyName Hassler
208 schema:givenName Eva
209 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0606545206.02
210 rdf:type schema:Person
211 sg:person.0617665673.78 schema:affiliation grid-institutes:grid.11598.34
212 schema:familyName Enzinger
213 schema:givenName Christian
214 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617665673.78
215 rdf:type schema:Person
216 sg:person.0627672706.64 schema:affiliation grid-institutes:grid.11598.34
217 schema:familyName Deutschmann
218 schema:givenName Hannes
219 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0627672706.64
220 rdf:type schema:Person
221 sg:person.0642261463.27 schema:affiliation grid-institutes:grid.11598.34
222 schema:familyName Wießpeiner
223 schema:givenName Ulrike
224 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0642261463.27
225 rdf:type schema:Person
226 sg:pub.10.1007/s00330-019-06062-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112944205
227 https://doi.org/10.1007/s00330-019-06062-6
228 rdf:type schema:CreativeWork
229 grid-institutes:grid.11598.34 schema:alternateName Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
230 Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
231 schema:name Department of Neurology, Division of General Neurology, Medical University of Graz, Auenbruggerplatz 22, 8036, Graz, Austria
232 Department of Radiology, Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Auenbruggerplatz 9, 8036, Graz, Austria
233 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...