Pulmonary perfusion by iodine subtraction maps CT angiography in acute pulmonary embolism: comparison with pulmonary perfusion SPECT (PASEP trial) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-04-11

AUTHORS

Brieg Dissaux, Pierre-Yves Le Floch, Philippe Robin, David Bourhis, Francis Couturaud, Pierre-Yves Salaun, Michel Nonent, Pierre-Yves Le Roux

ABSTRACT

ObjectiveTo assess the diagnostic accuracy of iodine map computed tomography pulmonary angiography (CTPA), for segment-based evaluation of lung perfusion in patients with acute pulmonary embolism (PE), using perfusion single-photon emission CT (SPECT) imaging as a reference standard.MethodsThirty participants who have been diagnosed with acute pulmonary embolism on CTPA underwent perfusion SPECT/CT within 24 h. Perfusion SPECT and iodine map were independently interpreted by 2 nuclear medicine physicians and 2 radiologists. For both modalities, each segment was classified as normoperfused or hypoperfused, as defined by a perfusion defect of more than 25% of a segment. The primary end point was the diagnostic accuracy (sensitivity and specificity) of iodine map for segment-based evaluation of lung perfusion, using perfusion SPECT imaging as a reference standard. Following blinded interpretation, a retrospective explanatory analysis was performed to determine potential causes of misinterpretation.ResultsThe median time between CTPA with iodine maps and perfusion SPECT was 14 h (range 2–23 h). A total of 597 segments were analyzed. Sensitivity and specificity of iodine maps with CTPA for the detection of segmental perfusion defects were 231/284 = 81.3% (95% CI 76.4 to 85.4%) and 247/313 = 78.9% (95% CI 74.1 to 83.1%), respectively. In retrospect, false results were explained in 48.7%.ConclusionIodine map CTPA showed promising results for the assessment of pulmonary perfusion in patients with acute PE, with sensitivity of 81.3% and specificity of 78.9%, respectively. Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the accuracy of the test.Key Points• Sensitivity and specificity of iodine subtraction maps for the detection of segmental perfusion defects were 81.3% (95% CI 76.4 to 85.4%) and 78.9% (95% CI 74.1 to 83.1%), respectively.• Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the diagnostic accuracy of the test. More... »

PAGES

4857-4864

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-020-06836-3

DOI

http://dx.doi.org/10.1007/s00330-020-06836-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1126626836

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/32279113


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Cardiorespiratory Medicine and Haematology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Acute Disease", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Angiography, Digital Subtraction", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computed Tomography Angiography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iodine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Iodine Isotopes", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Lung", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Pulmonary Embolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "ROC Curve", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Reproducibility of Results", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Tomography, Emission-Computed, Single-Photon", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Bretagne Occidentale, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Radiology Department, University Hospital, Brest, France", 
            "EA 3878 GETBO IFR 148, Brest, France", 
            "Universit\u00e9 de Bretagne Occidentale, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dissaux", 
        "givenName": "Brieg", 
        "id": "sg:person.011225361623.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011225361623.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Radiology Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "Radiology Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Floch", 
        "givenName": "Pierre-Yves", 
        "id": "sg:person.011556264211.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011556264211.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "EA 3878 GETBO IFR 148, Brest, France", 
            "Universit\u00e9 de Bretagne Occidentale, Brest, France", 
            "Nuclear Medicine Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Robin", 
        "givenName": "Philippe", 
        "id": "sg:person.01307140060.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "EA 3878 GETBO IFR 148, Brest, France", 
            "Nuclear Medicine Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bourhis", 
        "givenName": "David", 
        "id": "sg:person.0636567456.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pneumology Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "EA 3878 GETBO IFR 148, Brest, France", 
            "Universit\u00e9 de Bretagne Occidentale, Brest, France", 
            "Pneumology Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Couturaud", 
        "givenName": "Francis", 
        "id": "sg:person.0641055477.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641055477.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "EA 3878 GETBO IFR 148, Brest, France", 
            "Universit\u00e9 de Bretagne Occidentale, Brest, France", 
            "Nuclear Medicine Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Salaun", 
        "givenName": "Pierre-Yves", 
        "id": "sg:person.01021766527.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universit\u00e9 de Bretagne Occidentale, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.6289.5", 
          "name": [
            "Radiology Department, University Hospital, Brest, France", 
            "EA 3878 GETBO IFR 148, Brest, France", 
            "Universit\u00e9 de Bretagne Occidentale, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nonent", 
        "givenName": "Michel", 
        "id": "sg:person.0727735112.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727735112.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nuclear Medicine Department, University Hospital, Brest, France", 
          "id": "http://www.grid.ac/institutes/grid.411766.3", 
          "name": [
            "EA 3878 GETBO IFR 148, Brest, France", 
            "Universit\u00e9 de Bretagne Occidentale, Brest, France", 
            "Nuclear Medicine Department, University Hospital, Brest, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Le Roux", 
        "givenName": "Pierre-Yves", 
        "id": "sg:person.01156373352.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373352.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-013-2907-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049733659", 
          "https://doi.org/10.1007/s00330-013-2907-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-019-04338-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113856657", 
          "https://doi.org/10.1007/s00259-019-04338-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5740-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107223786", 
          "https://doi.org/10.1007/s00330-018-5740-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-009-1518-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009897711", 
          "https://doi.org/10.1007/s00330-009-1518-z"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2020-04-11", 
    "datePublishedReg": "2020-04-11", 
    "description": "ObjectiveTo assess the diagnostic accuracy of iodine map computed tomography pulmonary angiography (CTPA), for segment-based evaluation of lung perfusion in patients with acute pulmonary embolism (PE), using perfusion single-photon emission CT (SPECT) imaging as a reference standard.MethodsThirty participants who have been diagnosed with acute pulmonary embolism on CTPA underwent perfusion SPECT/CT within 24\u00a0h. Perfusion SPECT and iodine map were independently interpreted by 2 nuclear medicine physicians and 2 radiologists. For both modalities, each segment was classified as normoperfused or hypoperfused, as defined by a perfusion defect of more than 25% of a segment. The primary end point was the diagnostic accuracy (sensitivity and specificity) of iodine map for segment-based evaluation of lung perfusion, using perfusion SPECT imaging as a reference standard. Following blinded interpretation, a retrospective explanatory analysis was performed to determine potential causes of misinterpretation.ResultsThe median time between CTPA with iodine maps and perfusion SPECT was 14\u00a0h (range 2\u201323\u00a0h). A total of 597 segments were analyzed. Sensitivity and specificity of iodine maps with CTPA for the detection of segmental perfusion defects were 231/284\u2009=\u200981.3% (95% CI 76.4 to 85.4%) and 247/313\u2009=\u200978.9% (95% CI 74.1 to 83.1%), respectively. In retrospect, false results were explained in 48.7%.ConclusionIodine map CTPA showed promising results for the assessment of pulmonary perfusion in patients with acute PE, with sensitivity of 81.3% and specificity of 78.9%, respectively. Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the accuracy of the test.Key Points\u2022 Sensitivity and specificity of iodine subtraction maps for the detection of segmental perfusion defects were 81.3% (95% CI 76.4 to 85.4%) and 78.9% (95% CI 74.1 to 83.1%), respectively.\u2022 Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the diagnostic accuracy of the test.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-020-06836-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "single-photon emission CT", 
      "acute pulmonary embolism", 
      "perfusion single-photon emission CT", 
      "segmental perfusion defects", 
      "pulmonary embolism", 
      "perfusion defects", 
      "iodine maps", 
      "lung perfusion", 
      "diagnostic accuracy", 
      "pulmonary perfusion", 
      "perfusion SPECT/CT", 
      "primary end point", 
      "SPECT/CT", 
      "nuclear medicine physicians", 
      "reference standard", 
      "tomography pulmonary", 
      "median time", 
      "beam-hardening artifacts", 
      "MethodsThirty participants", 
      "CT angiography", 
      "medicine physicians", 
      "blinded interpretation", 
      "segment-based evaluation", 
      "emission CT", 
      "end point", 
      "embolism", 
      "subtraction maps", 
      "perfusion", 
      "CTPA", 
      "atelectasis", 
      "patients", 
      "potential causes", 
      "CT", 
      "specificity", 
      "pulmonary", 
      "angiography", 
      "ObjectiveTo", 
      "fissures", 
      "physicians", 
      "false results", 
      "promising results", 
      "radiologists", 
      "sensitivity", 
      "modalities", 
      "defects", 
      "total", 
      "evaluation", 
      "cause", 
      "typical pitfalls", 
      "pitfalls", 
      "segments", 
      "test", 
      "participants", 
      "assessment", 
      "detection", 
      "explanatory analysis", 
      "standards", 
      "results", 
      "recognition", 
      "misinterpretation", 
      "retrospect", 
      "time", 
      "comparison", 
      "analysis", 
      "accuracy", 
      "point", 
      "artifacts", 
      "interpretation", 
      "maps"
    ], 
    "name": "Pulmonary perfusion by iodine subtraction maps CT angiography in acute pulmonary embolism: comparison with pulmonary perfusion SPECT (PASEP trial)", 
    "pagination": "4857-4864", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1126626836"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-020-06836-3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "32279113"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-020-06836-3", 
      "https://app.dimensions.ai/details/publication/pub.1126626836"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_843.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-020-06836-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-06836-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-06836-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-06836-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-020-06836-3'


 

This table displays all metadata directly associated to this object as RDF triples.

278 TRIPLES      21 PREDICATES      116 URIs      104 LITERALS      25 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-020-06836-3 schema:about N17eeac4000fc4bc8b3f3510b3503efca
2 N342e54099699497d940dba2e40523559
3 N382516557eed4be1b7c63cd4e6ddf570
4 N3a3d5df5f3d14604ad367cfaa06ed41f
5 N584d57f1b9164d85aea76a2e9fd821e0
6 N6c7b43be3a8d4419ac60df8df5ed4655
7 N7eab319d035e4f3796eda2e837bb4de4
8 N8189c533cf9f44ce8602be00057b50bb
9 N92d073dae5784e0ebe1c9b6e56c56143
10 Naba23a42d369415d8ed200b28eb1f323
11 Nb2e75dbf82d9487bbae70af6db2d75e7
12 Nb723f493cce0472d904e8398cbb53291
13 Nb7d7577f6f234cd48bbc52dfb4fc588f
14 Nc692604a557c4a4186abe8773d9f5bba
15 Nd3cf7e0b468d46da8450fbccb7c19fe7
16 Nd8fdb3a22e1b42ca96542ce6d8d4b4cd
17 Ndaab1f624d1a4a42aedf10e1e76107a4
18 Ne0b9c1d89abf4dfba1fc09e56d01537a
19 anzsrc-for:11
20 anzsrc-for:1102
21 schema:author Na45a339f04154003bee88058794447ff
22 schema:citation sg:pub.10.1007/s00259-019-04338-z
23 sg:pub.10.1007/s00330-009-1518-z
24 sg:pub.10.1007/s00330-013-2907-x
25 sg:pub.10.1007/s00330-018-5740-4
26 schema:datePublished 2020-04-11
27 schema:datePublishedReg 2020-04-11
28 schema:description ObjectiveTo assess the diagnostic accuracy of iodine map computed tomography pulmonary angiography (CTPA), for segment-based evaluation of lung perfusion in patients with acute pulmonary embolism (PE), using perfusion single-photon emission CT (SPECT) imaging as a reference standard.MethodsThirty participants who have been diagnosed with acute pulmonary embolism on CTPA underwent perfusion SPECT/CT within 24 h. Perfusion SPECT and iodine map were independently interpreted by 2 nuclear medicine physicians and 2 radiologists. For both modalities, each segment was classified as normoperfused or hypoperfused, as defined by a perfusion defect of more than 25% of a segment. The primary end point was the diagnostic accuracy (sensitivity and specificity) of iodine map for segment-based evaluation of lung perfusion, using perfusion SPECT imaging as a reference standard. Following blinded interpretation, a retrospective explanatory analysis was performed to determine potential causes of misinterpretation.ResultsThe median time between CTPA with iodine maps and perfusion SPECT was 14 h (range 2–23 h). A total of 597 segments were analyzed. Sensitivity and specificity of iodine maps with CTPA for the detection of segmental perfusion defects were 231/284 = 81.3% (95% CI 76.4 to 85.4%) and 247/313 = 78.9% (95% CI 74.1 to 83.1%), respectively. In retrospect, false results were explained in 48.7%.ConclusionIodine map CTPA showed promising results for the assessment of pulmonary perfusion in patients with acute PE, with sensitivity of 81.3% and specificity of 78.9%, respectively. Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the accuracy of the test.Key Points• Sensitivity and specificity of iodine subtraction maps for the detection of segmental perfusion defects were 81.3% (95% CI 76.4 to 85.4%) and 78.9% (95% CI 74.1 to 83.1%), respectively.• Recognition of typical pitfalls such as atelectasis, fissures, or beam-hardening artifacts may further improve the diagnostic accuracy of the test.
29 schema:genre article
30 schema:isAccessibleForFree false
31 schema:isPartOf N6a537ce6b54940f882a1bb1a8fc55d35
32 N97eda95787484e6fa099b8fbaaec4491
33 sg:journal.1289120
34 schema:keywords CT
35 CT angiography
36 CTPA
37 MethodsThirty participants
38 ObjectiveTo
39 SPECT/CT
40 accuracy
41 acute pulmonary embolism
42 analysis
43 angiography
44 artifacts
45 assessment
46 atelectasis
47 beam-hardening artifacts
48 blinded interpretation
49 cause
50 comparison
51 defects
52 detection
53 diagnostic accuracy
54 embolism
55 emission CT
56 end point
57 evaluation
58 explanatory analysis
59 false results
60 fissures
61 interpretation
62 iodine maps
63 lung perfusion
64 maps
65 median time
66 medicine physicians
67 misinterpretation
68 modalities
69 nuclear medicine physicians
70 participants
71 patients
72 perfusion
73 perfusion SPECT/CT
74 perfusion defects
75 perfusion single-photon emission CT
76 physicians
77 pitfalls
78 point
79 potential causes
80 primary end point
81 promising results
82 pulmonary
83 pulmonary embolism
84 pulmonary perfusion
85 radiologists
86 recognition
87 reference standard
88 results
89 retrospect
90 segment-based evaluation
91 segmental perfusion defects
92 segments
93 sensitivity
94 single-photon emission CT
95 specificity
96 standards
97 subtraction maps
98 test
99 time
100 tomography pulmonary
101 total
102 typical pitfalls
103 schema:name Pulmonary perfusion by iodine subtraction maps CT angiography in acute pulmonary embolism: comparison with pulmonary perfusion SPECT (PASEP trial)
104 schema:pagination 4857-4864
105 schema:productId N2345a3996ac44fe69170f580e05a780a
106 N2770e514695a4040af4ca6dd82624bf3
107 N7b468390905248a885ca6eb418afce53
108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1126626836
109 https://doi.org/10.1007/s00330-020-06836-3
110 schema:sdDatePublished 2022-08-04T17:09
111 schema:sdLicense https://scigraph.springernature.com/explorer/license/
112 schema:sdPublisher N4c7b0a7361e14b5888da5e5bdcdfdb8a
113 schema:url https://doi.org/10.1007/s00330-020-06836-3
114 sgo:license sg:explorer/license/
115 sgo:sdDataset articles
116 rdf:type schema:ScholarlyArticle
117 N156374691bc644658facb3afaf6fea18 rdf:first sg:person.01021766527.49
118 rdf:rest N724201125d4b49e5af911f45972b5330
119 N17eeac4000fc4bc8b3f3510b3503efca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Computed Tomography Angiography
121 rdf:type schema:DefinedTerm
122 N2345a3996ac44fe69170f580e05a780a schema:name pubmed_id
123 schema:value 32279113
124 rdf:type schema:PropertyValue
125 N2770e514695a4040af4ca6dd82624bf3 schema:name dimensions_id
126 schema:value pub.1126626836
127 rdf:type schema:PropertyValue
128 N2b46b920139943b5a69e86a46d48a015 rdf:first sg:person.01156373352.82
129 rdf:rest rdf:nil
130 N342e54099699497d940dba2e40523559 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Iodine Isotopes
132 rdf:type schema:DefinedTerm
133 N382516557eed4be1b7c63cd4e6ddf570 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Humans
135 rdf:type schema:DefinedTerm
136 N3a3d5df5f3d14604ad367cfaa06ed41f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Acute Disease
138 rdf:type schema:DefinedTerm
139 N4c7b0a7361e14b5888da5e5bdcdfdb8a schema:name Springer Nature - SN SciGraph project
140 rdf:type schema:Organization
141 N52ef2d235303492facf5c8aed37470ad rdf:first sg:person.01307140060.86
142 rdf:rest Nc0fbd832131c4087817eefd8595bf008
143 N584d57f1b9164d85aea76a2e9fd821e0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
144 schema:name Iodine
145 rdf:type schema:DefinedTerm
146 N64d30466a56349778cd3220776c0a92c rdf:first sg:person.011556264211.25
147 rdf:rest N52ef2d235303492facf5c8aed37470ad
148 N69451f48645e469f8c68e820ae63f463 rdf:first sg:person.0641055477.73
149 rdf:rest N156374691bc644658facb3afaf6fea18
150 N6a537ce6b54940f882a1bb1a8fc55d35 schema:volumeNumber 30
151 rdf:type schema:PublicationVolume
152 N6c7b43be3a8d4419ac60df8df5ed4655 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Lung
154 rdf:type schema:DefinedTerm
155 N724201125d4b49e5af911f45972b5330 rdf:first sg:person.0727735112.53
156 rdf:rest N2b46b920139943b5a69e86a46d48a015
157 N7b468390905248a885ca6eb418afce53 schema:name doi
158 schema:value 10.1007/s00330-020-06836-3
159 rdf:type schema:PropertyValue
160 N7eab319d035e4f3796eda2e837bb4de4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name Angiography, Digital Subtraction
162 rdf:type schema:DefinedTerm
163 N8189c533cf9f44ce8602be00057b50bb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Aged, 80 and over
165 rdf:type schema:DefinedTerm
166 N92d073dae5784e0ebe1c9b6e56c56143 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Female
168 rdf:type schema:DefinedTerm
169 N97eda95787484e6fa099b8fbaaec4491 schema:issueNumber 9
170 rdf:type schema:PublicationIssue
171 Na45a339f04154003bee88058794447ff rdf:first sg:person.011225361623.30
172 rdf:rest N64d30466a56349778cd3220776c0a92c
173 Naba23a42d369415d8ed200b28eb1f323 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
174 schema:name Retrospective Studies
175 rdf:type schema:DefinedTerm
176 Nb2e75dbf82d9487bbae70af6db2d75e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
177 schema:name Aged
178 rdf:type schema:DefinedTerm
179 Nb723f493cce0472d904e8398cbb53291 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
180 schema:name Adult
181 rdf:type schema:DefinedTerm
182 Nb7d7577f6f234cd48bbc52dfb4fc588f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Pulmonary Embolism
184 rdf:type schema:DefinedTerm
185 Nc0fbd832131c4087817eefd8595bf008 rdf:first sg:person.0636567456.08
186 rdf:rest N69451f48645e469f8c68e820ae63f463
187 Nc692604a557c4a4186abe8773d9f5bba schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
188 schema:name Tomography, Emission-Computed, Single-Photon
189 rdf:type schema:DefinedTerm
190 Nd3cf7e0b468d46da8450fbccb7c19fe7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
191 schema:name Middle Aged
192 rdf:type schema:DefinedTerm
193 Nd8fdb3a22e1b42ca96542ce6d8d4b4cd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name ROC Curve
195 rdf:type schema:DefinedTerm
196 Ndaab1f624d1a4a42aedf10e1e76107a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Male
198 rdf:type schema:DefinedTerm
199 Ne0b9c1d89abf4dfba1fc09e56d01537a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Reproducibility of Results
201 rdf:type schema:DefinedTerm
202 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
203 schema:name Medical and Health Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
206 schema:name Cardiorespiratory Medicine and Haematology
207 rdf:type schema:DefinedTerm
208 sg:journal.1289120 schema:issn 0938-7994
209 1432-1084
210 schema:name European Radiology
211 schema:publisher Springer Nature
212 rdf:type schema:Periodical
213 sg:person.01021766527.49 schema:affiliation grid-institutes:grid.411766.3
214 schema:familyName Salaun
215 schema:givenName Pierre-Yves
216 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01021766527.49
217 rdf:type schema:Person
218 sg:person.011225361623.30 schema:affiliation grid-institutes:grid.6289.5
219 schema:familyName Dissaux
220 schema:givenName Brieg
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011225361623.30
222 rdf:type schema:Person
223 sg:person.011556264211.25 schema:affiliation grid-institutes:grid.411766.3
224 schema:familyName Le Floch
225 schema:givenName Pierre-Yves
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011556264211.25
227 rdf:type schema:Person
228 sg:person.01156373352.82 schema:affiliation grid-institutes:grid.411766.3
229 schema:familyName Le Roux
230 schema:givenName Pierre-Yves
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01156373352.82
232 rdf:type schema:Person
233 sg:person.01307140060.86 schema:affiliation grid-institutes:grid.411766.3
234 schema:familyName Robin
235 schema:givenName Philippe
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01307140060.86
237 rdf:type schema:Person
238 sg:person.0636567456.08 schema:affiliation grid-institutes:grid.411766.3
239 schema:familyName Bourhis
240 schema:givenName David
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0636567456.08
242 rdf:type schema:Person
243 sg:person.0641055477.73 schema:affiliation grid-institutes:grid.411766.3
244 schema:familyName Couturaud
245 schema:givenName Francis
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641055477.73
247 rdf:type schema:Person
248 sg:person.0727735112.53 schema:affiliation grid-institutes:grid.6289.5
249 schema:familyName Nonent
250 schema:givenName Michel
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0727735112.53
252 rdf:type schema:Person
253 sg:pub.10.1007/s00259-019-04338-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1113856657
254 https://doi.org/10.1007/s00259-019-04338-z
255 rdf:type schema:CreativeWork
256 sg:pub.10.1007/s00330-009-1518-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009897711
257 https://doi.org/10.1007/s00330-009-1518-z
258 rdf:type schema:CreativeWork
259 sg:pub.10.1007/s00330-013-2907-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049733659
260 https://doi.org/10.1007/s00330-013-2907-x
261 rdf:type schema:CreativeWork
262 sg:pub.10.1007/s00330-018-5740-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107223786
263 https://doi.org/10.1007/s00330-018-5740-4
264 rdf:type schema:CreativeWork
265 grid-institutes:grid.411766.3 schema:alternateName Nuclear Medicine Department, University Hospital, Brest, France
266 Pneumology Department, University Hospital, Brest, France
267 Radiology Department, University Hospital, Brest, France
268 schema:name EA 3878 GETBO IFR 148, Brest, France
269 Nuclear Medicine Department, University Hospital, Brest, France
270 Pneumology Department, University Hospital, Brest, France
271 Radiology Department, University Hospital, Brest, France
272 Université de Bretagne Occidentale, Brest, France
273 rdf:type schema:Organization
274 grid-institutes:grid.6289.5 schema:alternateName Université de Bretagne Occidentale, Brest, France
275 schema:name EA 3878 GETBO IFR 148, Brest, France
276 Radiology Department, University Hospital, Brest, France
277 Université de Bretagne Occidentale, Brest, France
278 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...