Increased diagnostic accuracy of giant cell arteritis using three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance imaging at 3 T View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12-06

AUTHORS

Guillaume Poillon, Adrien Collin, Ygal Benhamou, Gaëlle Clavel, Julien Savatovsky, Cécile Pinson, Kevin Zuber, Frédérique Charbonneau, Catherine Vignal, Hervé Picard, Tifenn Leturcq, Sébastien Miranda, Thomas Sené, Emmanuel Gerardin, Augustin Lecler

ABSTRACT

ObjectivesTo compare the diagnostic accuracy of 3D versus 2D contrast-enhanced vessel-wall (CE-VW) MRI of extracranial and intracranial arteries in the diagnosis of GCA.MethodsThis prospective two-center study was approved by a national research ethics board and enrolled participants from December 2014 to October 2017. A protocol including both a 2D and a 3D CE-VW MRI at 3 T was performed in all patients. Two neuroradiologists, blinded to clinical data, individually analyzed separately and in random order 2D and 3D sequences in the axial plane only or with reformatting. The primary judgment criterion was the presence of GCA-related inflammatory changes of extracranial arteries. Secondary judgment criteria included inflammatory changes of intracranial arteries and the presence of artifacts. A McNemar’s test was used to compare 2D to 3D CE-VW MRIs.ResultsSeventy-nine participants were included in the study (42 men and 37 women, mean age 75 (± 9.5 years)). Fifty-one had a final diagnosis of GCA. Reformatted 3D CE-VW was significantly more sensitive than axial-only 3D CE-VW or 2D CE-VW when showing inflammatory change of extracranial arteries: 41/51(80%) versus 37/51 (73%) (p = 0.046) and 35/50 (70%) (p = 0.03). Reformatted 3D CE-VW was significantly more specific than 2D CE-VW: 27/27 (100%) versus 22/26 (85%) (p = 0.04). 3D CE-VW showed higher sensitivity than 2D CE-VW when detecting inflammatory changes of intracranial arteries: 10/51(20%) versus 4/50(8%), p = 0.01. Interobserver agreement was excellent for both 2D and 3D CE-VW MRI: κ = 0.84 and 0.82 respectively.Conclusions3D CE-VW MRI supported more accurate diagnoses of GCA than 2D CE-VW.Key Points• 3D contrast-enhanced vessel-wall magnetic resonance imaging is a high accuracy, non-invasive diagnostic tool used to diagnose giant cell arteritis.• 3D contrast-enhanced vessel-wall imaging is feasible for clinicians to complete within a relatively short time, allowing immediate assessment of extra and intracranial arteries.• 3D contrast-enhanced vessel-wall magnetic resonance imaging might be considered a diagnostic tool when intracranial manifestation of GCA is suspected. More... »

PAGES

1866-1875

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7

DOI

http://dx.doi.org/10.1007/s00330-019-06536-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1123190712

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31811430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Giant Cell Arteritis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temporal Arteries", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Rouen University Hospital, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
            "Department of Neuroradiology, Rouen University Hospital, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poillon", 
        "givenName": "Guillaume", 
        "id": "sg:person.012043451130.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043451130.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collin", 
        "givenName": "Adrien", 
        "id": "sg:person.012213541573.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012213541573.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benhamou", 
        "givenName": "Ygal", 
        "id": "sg:person.01350130373.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350130373.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clavel", 
        "givenName": "Ga\u00eblle", 
        "id": "sg:person.01245726047.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245726047.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savatovsky", 
        "givenName": "Julien", 
        "id": "sg:person.01346477626.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346477626.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Rouen University Hospital, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Neuroradiology, Rouen University Hospital, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinson", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.012131452214.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131452214.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuber", 
        "givenName": "Kevin", 
        "id": "sg:person.010262335434.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010262335434.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charbonneau", 
        "givenName": "Fr\u00e9d\u00e9rique", 
        "id": "sg:person.0737233715.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737233715.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignal", 
        "givenName": "Catherine", 
        "id": "sg:person.01000176674.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000176674.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
            "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Picard", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.014513766571.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014513766571.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leturcq", 
        "givenName": "Tifenn", 
        "id": "sg:person.01366635734.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366635734.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miranda", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.0611777220.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611777220.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sen\u00e9", 
        "givenName": "Thomas", 
        "id": "sg:person.0673247445.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673247445.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Rouen University Hospital, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Neuroradiology, Rouen University Hospital, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerardin", 
        "givenName": "Emmanuel", 
        "id": "sg:person.01303561430.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303561430.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lecler", 
        "givenName": "Augustin", 
        "id": "sg:person.013202254465.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202254465.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-12-06", 
    "datePublishedReg": "2019-12-06", 
    "description": "ObjectivesTo compare the diagnostic accuracy of 3D versus 2D contrast-enhanced vessel-wall (CE-VW) MRI of extracranial and intracranial arteries in the diagnosis of GCA.MethodsThis prospective two-center study was approved by a national research ethics board and enrolled participants from December 2014 to October 2017. A protocol including both a 2D and a 3D CE-VW MRI at 3 T was performed in all patients. Two neuroradiologists, blinded to clinical data, individually analyzed separately and in random order 2D and 3D sequences in the axial plane only or with reformatting. The primary judgment criterion was the presence of GCA-related inflammatory changes of extracranial arteries. Secondary judgment criteria included inflammatory changes of intracranial arteries and the presence of artifacts. A McNemar\u2019s test was used to compare 2D to 3D CE-VW MRIs.ResultsSeventy-nine participants were included in the study (42 men and 37 women, mean age 75 (\u00b1 9.5 years)). Fifty-one had a final diagnosis of GCA. Reformatted 3D CE-VW was significantly more sensitive than axial-only 3D CE-VW or 2D CE-VW when showing inflammatory change of extracranial arteries: 41/51(80%) versus 37/51 (73%) (p = 0.046) and 35/50 (70%) (p = 0.03). Reformatted 3D CE-VW was significantly more specific than 2D CE-VW: 27/27 (100%) versus 22/26 (85%) (p = 0.04). 3D CE-VW showed higher sensitivity than 2D CE-VW when detecting inflammatory changes of intracranial arteries: 10/51(20%) versus 4/50(8%), p = 0.01. Interobserver agreement was excellent for both 2D and 3D CE-VW MRI: \u03ba = 0.84 and 0.82 respectively.Conclusions3D CE-VW MRI supported more accurate diagnoses of GCA than 2D CE-VW.Key Points\u2022 3D contrast-enhanced vessel-wall magnetic resonance imaging is a high accuracy, non-invasive diagnostic tool used to diagnose giant cell arteritis.\u2022 3D contrast-enhanced vessel-wall imaging is feasible for clinicians to complete within a relatively short time, allowing immediate assessment of extra and intracranial arteries.\u2022 3D contrast-enhanced vessel-wall magnetic resonance imaging might be considered a diagnostic tool when intracranial manifestation of GCA is suspected.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-019-06536-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "vessel wall magnetic resonance imaging", 
      "giant cell arteritis", 
      "inflammatory changes", 
      "intracranial arteries", 
      "magnetic resonance imaging", 
      "cell arteritis", 
      "extracranial arteries", 
      "resonance imaging", 
      "diagnostic accuracy", 
      "diagnosis of GCA", 
      "two-center study", 
      "primary judgment criterion", 
      "Secondary judgment criteria", 
      "vessel wall magnetic resonance", 
      "non-invasive diagnostic tool", 
      "diagnostic tool", 
      "vessel wall imaging", 
      "vessel wall MRI", 
      "intracranial manifestations", 
      "final diagnosis", 
      "clinical data", 
      "Research Ethics Board", 
      "artery", 
      "accurate diagnosis", 
      "McNemar test", 
      "interobserver agreement", 
      "MRI", 
      "diagnosis", 
      "immediate assessment", 
      "Ethics Board", 
      "arteritis", 
      "axial plane", 
      "magnetic resonance", 
      "imaging", 
      "presence of artifacts", 
      "participants", 
      "MethodsThis", 
      "patients", 
      "clinicians", 
      "ObjectivesTo", 
      "neuroradiologists", 
      "manifestations", 
      "criteria", 
      "changes", 
      "study", 
      "judgment criteria", 
      "test", 
      "presence", 
      "high sensitivity", 
      "GCA", 
      "assessment", 
      "short time", 
      "protocol", 
      "sensitivity", 
      "tool", 
      "data", 
      "time", 
      "accuracy", 
      "order 2d", 
      "resonance", 
      "board", 
      "sequence", 
      "artifacts", 
      "high accuracy", 
      "agreement", 
      "plane", 
      "contrast-enhanced vessel-wall (CE-VW) MRI", 
      "national research ethics board", 
      "CE-VW MRI", 
      "random order 2D", 
      "presence of GCA", 
      "ResultsSeventy-nine participants", 
      "CE-VW", 
      "Conclusions3D CE-VW MRI", 
      "contrast-enhanced vessel-wall magnetic resonance imaging", 
      "contrast-enhanced vessel-wall imaging", 
      "three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance", 
      "fat-saturated contrast-enhanced vessel-wall magnetic resonance", 
      "contrast-enhanced vessel-wall magnetic resonance"
    ], 
    "name": "Increased diagnostic accuracy of giant cell arteritis using three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance imaging at 3 T", 
    "pagination": "1866-1875", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1123190712"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06536-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31811430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06536-7", 
      "https://app.dimensions.ai/details/publication/pub.1123190712"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_808.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-019-06536-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'


 

This table displays all metadata directly associated to this object as RDF triples.

308 TRIPLES      21 PREDICATES      119 URIs      111 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06536-7 schema:about N07053dd224cd4a9c91f77024a4eb656a
2 N0766bc39f7e443f39e4708c94e0344b2
3 N2246c34634d94c3e9c495812c5a9db9e
4 N3718bd36de3a4d659ba713e3ff98050a
5 N3f0387d40afa46ae8cec3b316d5dbd23
6 N6d25cff3eb9a45e6966f5c9f75e1140c
7 N811028ff27524c42972a834e8d0f8b65
8 N846b59b5ce3046c9bbe93f4f799f754f
9 N94b6a90b5146455b977ba2b59cfe8c24
10 Nadfaa0556976454c976866895fdd11c9
11 Nb9eee6bc0a7649ce930df4bdb47b90ca
12 Nd50d17de062145d49071fa06f05beeec
13 Ne9fd22f53dc148a19e3ab47086bd293e
14 Nffa367c07e3a45aabff0fbef74a3b0f9
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N3856158d2fc7406c9c664f2f9db2daaa
18 schema:datePublished 2019-12-06
19 schema:datePublishedReg 2019-12-06
20 schema:description ObjectivesTo compare the diagnostic accuracy of 3D versus 2D contrast-enhanced vessel-wall (CE-VW) MRI of extracranial and intracranial arteries in the diagnosis of GCA.MethodsThis prospective two-center study was approved by a national research ethics board and enrolled participants from December 2014 to October 2017. A protocol including both a 2D and a 3D CE-VW MRI at 3 T was performed in all patients. Two neuroradiologists, blinded to clinical data, individually analyzed separately and in random order 2D and 3D sequences in the axial plane only or with reformatting. The primary judgment criterion was the presence of GCA-related inflammatory changes of extracranial arteries. Secondary judgment criteria included inflammatory changes of intracranial arteries and the presence of artifacts. A McNemar’s test was used to compare 2D to 3D CE-VW MRIs.ResultsSeventy-nine participants were included in the study (42 men and 37 women, mean age 75 (± 9.5 years)). Fifty-one had a final diagnosis of GCA. Reformatted 3D CE-VW was significantly more sensitive than axial-only 3D CE-VW or 2D CE-VW when showing inflammatory change of extracranial arteries: 41/51(80%) versus 37/51 (73%) (p = 0.046) and 35/50 (70%) (p = 0.03). Reformatted 3D CE-VW was significantly more specific than 2D CE-VW: 27/27 (100%) versus 22/26 (85%) (p = 0.04). 3D CE-VW showed higher sensitivity than 2D CE-VW when detecting inflammatory changes of intracranial arteries: 10/51(20%) versus 4/50(8%), p = 0.01. Interobserver agreement was excellent for both 2D and 3D CE-VW MRI: κ = 0.84 and 0.82 respectively.Conclusions3D CE-VW MRI supported more accurate diagnoses of GCA than 2D CE-VW.Key Points• 3D contrast-enhanced vessel-wall magnetic resonance imaging is a high accuracy, non-invasive diagnostic tool used to diagnose giant cell arteritis.• 3D contrast-enhanced vessel-wall imaging is feasible for clinicians to complete within a relatively short time, allowing immediate assessment of extra and intracranial arteries.• 3D contrast-enhanced vessel-wall magnetic resonance imaging might be considered a diagnostic tool when intracranial manifestation of GCA is suspected.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N421f41cce8484caea0dec7eead93673f
25 N85d8f564b264402db5b7abfd59c287ba
26 sg:journal.1289120
27 schema:keywords CE-VW
28 CE-VW MRI
29 Conclusions3D CE-VW MRI
30 Ethics Board
31 GCA
32 MRI
33 McNemar test
34 MethodsThis
35 ObjectivesTo
36 Research Ethics Board
37 ResultsSeventy-nine participants
38 Secondary judgment criteria
39 accuracy
40 accurate diagnosis
41 agreement
42 arteritis
43 artery
44 artifacts
45 assessment
46 axial plane
47 board
48 cell arteritis
49 changes
50 clinical data
51 clinicians
52 contrast-enhanced vessel-wall (CE-VW) MRI
53 contrast-enhanced vessel-wall imaging
54 contrast-enhanced vessel-wall magnetic resonance
55 contrast-enhanced vessel-wall magnetic resonance imaging
56 criteria
57 data
58 diagnosis
59 diagnosis of GCA
60 diagnostic accuracy
61 diagnostic tool
62 extracranial arteries
63 fat-saturated contrast-enhanced vessel-wall magnetic resonance
64 final diagnosis
65 giant cell arteritis
66 high accuracy
67 high sensitivity
68 imaging
69 immediate assessment
70 inflammatory changes
71 interobserver agreement
72 intracranial arteries
73 intracranial manifestations
74 judgment criteria
75 magnetic resonance
76 magnetic resonance imaging
77 manifestations
78 national research ethics board
79 neuroradiologists
80 non-invasive diagnostic tool
81 order 2d
82 participants
83 patients
84 plane
85 presence
86 presence of GCA
87 presence of artifacts
88 primary judgment criterion
89 protocol
90 random order 2D
91 resonance
92 resonance imaging
93 sensitivity
94 sequence
95 short time
96 study
97 test
98 three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance
99 time
100 tool
101 two-center study
102 vessel wall MRI
103 vessel wall imaging
104 vessel wall magnetic resonance
105 vessel wall magnetic resonance imaging
106 schema:name Increased diagnostic accuracy of giant cell arteritis using three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance imaging at 3 T
107 schema:pagination 1866-1875
108 schema:productId N0db4846283d24593aeb0b2d34beeeb3c
109 Nb667010a86c64da0ab1272b0dde244c7
110 Nc7cabf0125044503a8bb36e2558ea333
111 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123190712
112 https://doi.org/10.1007/s00330-019-06536-7
113 schema:sdDatePublished 2022-01-01T18:51
114 schema:sdLicense https://scigraph.springernature.com/explorer/license/
115 schema:sdPublisher Nda87973448a14a3891f6cf15bea6da00
116 schema:url https://doi.org/10.1007/s00330-019-06536-7
117 sgo:license sg:explorer/license/
118 sgo:sdDataset articles
119 rdf:type schema:ScholarlyArticle
120 N07053dd224cd4a9c91f77024a4eb656a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
121 schema:name Sensitivity and Specificity
122 rdf:type schema:DefinedTerm
123 N0766bc39f7e443f39e4708c94e0344b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Male
125 rdf:type schema:DefinedTerm
126 N0db4846283d24593aeb0b2d34beeeb3c schema:name dimensions_id
127 schema:value pub.1123190712
128 rdf:type schema:PropertyValue
129 N0f9d8c0ca2c44882afe75f5e1ce651b7 rdf:first sg:person.0737233715.96
130 rdf:rest Nc399a72bf22645a4a9594a3b7f140b4c
131 N17d20b37dc7e4d24b71d52c472c40e0e rdf:first sg:person.012131452214.43
132 rdf:rest Nee54eb7d661b47bcabce1b5a8cf5a56c
133 N2246c34634d94c3e9c495812c5a9db9e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
134 schema:name Middle Aged
135 rdf:type schema:DefinedTerm
136 N3718bd36de3a4d659ba713e3ff98050a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Female
138 rdf:type schema:DefinedTerm
139 N3856158d2fc7406c9c664f2f9db2daaa rdf:first sg:person.012043451130.42
140 rdf:rest N79624356abbc45d4ba56b75eeb08ef42
141 N3f0387d40afa46ae8cec3b316d5dbd23 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
142 schema:name Contrast Media
143 rdf:type schema:DefinedTerm
144 N421f41cce8484caea0dec7eead93673f schema:volumeNumber 30
145 rdf:type schema:PublicationVolume
146 N565fa0f8f5a34af3b499f6d5248c31f3 rdf:first sg:person.0611777220.06
147 rdf:rest Nb07855b89cec41f9bdac6309ff8ed9c0
148 N6d25cff3eb9a45e6966f5c9f75e1140c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Imaging, Three-Dimensional
150 rdf:type schema:DefinedTerm
151 N79624356abbc45d4ba56b75eeb08ef42 rdf:first sg:person.012213541573.82
152 rdf:rest N91e728ab09be407f8dd451f62036ec91
153 N7fa6bf6d627c4b949e7bff34b50b3236 rdf:first sg:person.01366635734.39
154 rdf:rest N565fa0f8f5a34af3b499f6d5248c31f3
155 N811028ff27524c42972a834e8d0f8b65 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Prospective Studies
157 rdf:type schema:DefinedTerm
158 N846b59b5ce3046c9bbe93f4f799f754f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
159 schema:name Magnetic Resonance Imaging
160 rdf:type schema:DefinedTerm
161 N85d8f564b264402db5b7abfd59c287ba schema:issueNumber 4
162 rdf:type schema:PublicationIssue
163 N91e728ab09be407f8dd451f62036ec91 rdf:first sg:person.01350130373.59
164 rdf:rest Na3f9ef695659449da4eb9f716c3489bc
165 N9242e671f9094091b039234207e93105 rdf:first sg:person.013202254465.75
166 rdf:rest rdf:nil
167 N94b6a90b5146455b977ba2b59cfe8c24 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
168 schema:name Aged, 80 and over
169 rdf:type schema:DefinedTerm
170 Na3f9ef695659449da4eb9f716c3489bc rdf:first sg:person.01245726047.13
171 rdf:rest Nfef9b67599bb4af0811bfe0bc1ec0e96
172 Na4c296f26571415cb2d94e185d086aee rdf:first sg:person.014513766571.96
173 rdf:rest N7fa6bf6d627c4b949e7bff34b50b3236
174 Nadfaa0556976454c976866895fdd11c9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Temporal Arteries
176 rdf:type schema:DefinedTerm
177 Nb07855b89cec41f9bdac6309ff8ed9c0 rdf:first sg:person.0673247445.80
178 rdf:rest Nc56ebb62757d4995a5e524ca20857e5c
179 Nb667010a86c64da0ab1272b0dde244c7 schema:name pubmed_id
180 schema:value 31811430
181 rdf:type schema:PropertyValue
182 Nb9eee6bc0a7649ce930df4bdb47b90ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
183 schema:name Humans
184 rdf:type schema:DefinedTerm
185 Nc399a72bf22645a4a9594a3b7f140b4c rdf:first sg:person.01000176674.73
186 rdf:rest Na4c296f26571415cb2d94e185d086aee
187 Nc56ebb62757d4995a5e524ca20857e5c rdf:first sg:person.01303561430.45
188 rdf:rest N9242e671f9094091b039234207e93105
189 Nc7cabf0125044503a8bb36e2558ea333 schema:name doi
190 schema:value 10.1007/s00330-019-06536-7
191 rdf:type schema:PropertyValue
192 Nd50d17de062145d49071fa06f05beeec schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
193 schema:name Giant Cell Arteritis
194 rdf:type schema:DefinedTerm
195 Nda87973448a14a3891f6cf15bea6da00 schema:name Springer Nature - SN SciGraph project
196 rdf:type schema:Organization
197 Ne9fd22f53dc148a19e3ab47086bd293e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
198 schema:name Organometallic Compounds
199 rdf:type schema:DefinedTerm
200 Nee54eb7d661b47bcabce1b5a8cf5a56c rdf:first sg:person.010262335434.89
201 rdf:rest N0f9d8c0ca2c44882afe75f5e1ce651b7
202 Nfef9b67599bb4af0811bfe0bc1ec0e96 rdf:first sg:person.01346477626.47
203 rdf:rest N17d20b37dc7e4d24b71d52c472c40e0e
204 Nffa367c07e3a45aabff0fbef74a3b0f9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
205 schema:name Aged
206 rdf:type schema:DefinedTerm
207 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
208 schema:name Medical and Health Sciences
209 rdf:type schema:DefinedTerm
210 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
211 schema:name Clinical Sciences
212 rdf:type schema:DefinedTerm
213 sg:journal.1289120 schema:issn 0938-7994
214 1432-1084
215 schema:name European Radiology
216 schema:publisher Springer Nature
217 rdf:type schema:Periodical
218 sg:person.01000176674.73 schema:affiliation grid-institutes:grid.414318.b
219 schema:familyName Vignal
220 schema:givenName Catherine
221 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000176674.73
222 rdf:type schema:Person
223 sg:person.010262335434.89 schema:affiliation grid-institutes:grid.414318.b
224 schema:familyName Zuber
225 schema:givenName Kevin
226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010262335434.89
227 rdf:type schema:Person
228 sg:person.012043451130.42 schema:affiliation grid-institutes:grid.41724.34
229 schema:familyName Poillon
230 schema:givenName Guillaume
231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043451130.42
232 rdf:type schema:Person
233 sg:person.012131452214.43 schema:affiliation grid-institutes:grid.41724.34
234 schema:familyName Pinson
235 schema:givenName Cécile
236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131452214.43
237 rdf:type schema:Person
238 sg:person.012213541573.82 schema:affiliation grid-institutes:None
239 schema:familyName Collin
240 schema:givenName Adrien
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012213541573.82
242 rdf:type schema:Person
243 sg:person.01245726047.13 schema:affiliation grid-institutes:grid.414318.b
244 schema:familyName Clavel
245 schema:givenName Gaëlle
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245726047.13
247 rdf:type schema:Person
248 sg:person.01303561430.45 schema:affiliation grid-institutes:grid.41724.34
249 schema:familyName Gerardin
250 schema:givenName Emmanuel
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303561430.45
252 rdf:type schema:Person
253 sg:person.013202254465.75 schema:affiliation grid-institutes:None
254 schema:familyName Lecler
255 schema:givenName Augustin
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202254465.75
257 rdf:type schema:Person
258 sg:person.01346477626.47 schema:affiliation grid-institutes:None
259 schema:familyName Savatovsky
260 schema:givenName Julien
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346477626.47
262 rdf:type schema:Person
263 sg:person.01350130373.59 schema:affiliation grid-institutes:grid.41724.34
264 schema:familyName Benhamou
265 schema:givenName Ygal
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350130373.59
267 rdf:type schema:Person
268 sg:person.01366635734.39 schema:affiliation grid-institutes:grid.414318.b
269 schema:familyName Leturcq
270 schema:givenName Tifenn
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366635734.39
272 rdf:type schema:Person
273 sg:person.014513766571.96 schema:affiliation grid-institutes:grid.414318.b
274 schema:familyName Picard
275 schema:givenName Hervé
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014513766571.96
277 rdf:type schema:Person
278 sg:person.0611777220.06 schema:affiliation grid-institutes:grid.41724.34
279 schema:familyName Miranda
280 schema:givenName Sébastien
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611777220.06
282 rdf:type schema:Person
283 sg:person.0673247445.80 schema:affiliation grid-institutes:grid.414318.b
284 schema:familyName Sené
285 schema:givenName Thomas
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673247445.80
287 rdf:type schema:Person
288 sg:person.0737233715.96 schema:affiliation grid-institutes:None
289 schema:familyName Charbonneau
290 schema:givenName Frédérique
291 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737233715.96
292 rdf:type schema:Person
293 grid-institutes:None schema:alternateName Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France
294 schema:name Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France
295 rdf:type schema:Organization
296 grid-institutes:grid.414318.b schema:alternateName Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France
297 Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France
298 Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France
299 schema:name Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France
300 Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France
301 Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France
302 rdf:type schema:Organization
303 grid-institutes:grid.41724.34 schema:alternateName Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France
304 Department of Neuroradiology, Rouen University Hospital, Rouen, France
305 schema:name Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France
306 Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France
307 Department of Neuroradiology, Rouen University Hospital, Rouen, France
308 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...