Increased diagnostic accuracy of giant cell arteritis using three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance imaging at 3 T View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-12-06

AUTHORS

Guillaume Poillon, Adrien Collin, Ygal Benhamou, Gaëlle Clavel, Julien Savatovsky, Cécile Pinson, Kevin Zuber, Frédérique Charbonneau, Catherine Vignal, Hervé Picard, Tifenn Leturcq, Sébastien Miranda, Thomas Sené, Emmanuel Gerardin, Augustin Lecler

ABSTRACT

ObjectivesTo compare the diagnostic accuracy of 3D versus 2D contrast-enhanced vessel-wall (CE-VW) MRI of extracranial and intracranial arteries in the diagnosis of GCA.MethodsThis prospective two-center study was approved by a national research ethics board and enrolled participants from December 2014 to October 2017. A protocol including both a 2D and a 3D CE-VW MRI at 3 T was performed in all patients. Two neuroradiologists, blinded to clinical data, individually analyzed separately and in random order 2D and 3D sequences in the axial plane only or with reformatting. The primary judgment criterion was the presence of GCA-related inflammatory changes of extracranial arteries. Secondary judgment criteria included inflammatory changes of intracranial arteries and the presence of artifacts. A McNemar’s test was used to compare 2D to 3D CE-VW MRIs.ResultsSeventy-nine participants were included in the study (42 men and 37 women, mean age 75 (± 9.5 years)). Fifty-one had a final diagnosis of GCA. Reformatted 3D CE-VW was significantly more sensitive than axial-only 3D CE-VW or 2D CE-VW when showing inflammatory change of extracranial arteries: 41/51(80%) versus 37/51 (73%) (p = 0.046) and 35/50 (70%) (p = 0.03). Reformatted 3D CE-VW was significantly more specific than 2D CE-VW: 27/27 (100%) versus 22/26 (85%) (p = 0.04). 3D CE-VW showed higher sensitivity than 2D CE-VW when detecting inflammatory changes of intracranial arteries: 10/51(20%) versus 4/50(8%), p = 0.01. Interobserver agreement was excellent for both 2D and 3D CE-VW MRI: κ = 0.84 and 0.82 respectively.Conclusions3D CE-VW MRI supported more accurate diagnoses of GCA than 2D CE-VW.Key Points• 3D contrast-enhanced vessel-wall magnetic resonance imaging is a high accuracy, non-invasive diagnostic tool used to diagnose giant cell arteritis.• 3D contrast-enhanced vessel-wall imaging is feasible for clinicians to complete within a relatively short time, allowing immediate assessment of extra and intracranial arteries.• 3D contrast-enhanced vessel-wall magnetic resonance imaging might be considered a diagnostic tool when intracranial manifestation of GCA is suspected. More... »

PAGES

1866-1875

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7

DOI

http://dx.doi.org/10.1007/s00330-019-06536-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1123190712

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31811430


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged, 80 and over", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Contrast Media", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Giant Cell Arteritis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Imaging, Three-Dimensional", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Magnetic Resonance Imaging", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Organometallic Compounds", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Prospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Temporal Arteries", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Rouen University Hospital, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
            "Department of Neuroradiology, Rouen University Hospital, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poillon", 
        "givenName": "Guillaume", 
        "id": "sg:person.012043451130.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043451130.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Collin", 
        "givenName": "Adrien", 
        "id": "sg:person.012213541573.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012213541573.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Benhamou", 
        "givenName": "Ygal", 
        "id": "sg:person.01350130373.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350130373.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clavel", 
        "givenName": "Ga\u00eblle", 
        "id": "sg:person.01245726047.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245726047.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Savatovsky", 
        "givenName": "Julien", 
        "id": "sg:person.01346477626.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346477626.47"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Rouen University Hospital, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Neuroradiology, Rouen University Hospital, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pinson", 
        "givenName": "C\u00e9cile", 
        "id": "sg:person.012131452214.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131452214.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zuber", 
        "givenName": "Kevin", 
        "id": "sg:person.010262335434.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010262335434.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Charbonneau", 
        "givenName": "Fr\u00e9d\u00e9rique", 
        "id": "sg:person.0737233715.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737233715.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vignal", 
        "givenName": "Catherine", 
        "id": "sg:person.01000176674.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000176674.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
            "Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Picard", 
        "givenName": "Herv\u00e9", 
        "id": "sg:person.014513766571.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014513766571.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leturcq", 
        "givenName": "Tifenn", 
        "id": "sg:person.01366635734.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366635734.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miranda", 
        "givenName": "S\u00e9bastien", 
        "id": "sg:person.0611777220.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611777220.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France", 
          "id": "http://www.grid.ac/institutes/grid.414318.b", 
          "name": [
            "Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sen\u00e9", 
        "givenName": "Thomas", 
        "id": "sg:person.0673247445.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673247445.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Rouen University Hospital, Rouen, France", 
          "id": "http://www.grid.ac/institutes/grid.41724.34", 
          "name": [
            "Department of Neuroradiology, Rouen University Hospital, Rouen, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gerardin", 
        "givenName": "Emmanuel", 
        "id": "sg:person.01303561430.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303561430.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lecler", 
        "givenName": "Augustin", 
        "id": "sg:person.013202254465.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202254465.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2019-12-06", 
    "datePublishedReg": "2019-12-06", 
    "description": "ObjectivesTo compare the diagnostic accuracy of 3D versus 2D contrast-enhanced vessel-wall (CE-VW) MRI of extracranial and intracranial arteries in the diagnosis of GCA.MethodsThis prospective two-center study was approved by a national research ethics board and enrolled participants from December 2014 to October 2017. A protocol including both a 2D and a 3D CE-VW MRI at 3 T was performed in all patients. Two neuroradiologists, blinded to clinical data, individually analyzed separately and in random order 2D and 3D sequences in the axial plane only or with reformatting. The primary judgment criterion was the presence of GCA-related inflammatory changes of extracranial arteries. Secondary judgment criteria included inflammatory changes of intracranial arteries and the presence of artifacts. A McNemar\u2019s test was used to compare 2D to 3D CE-VW MRIs.ResultsSeventy-nine participants were included in the study (42 men and 37 women, mean age 75 (\u00b1 9.5 years)). Fifty-one had a final diagnosis of GCA. Reformatted 3D CE-VW was significantly more sensitive than axial-only 3D CE-VW or 2D CE-VW when showing inflammatory change of extracranial arteries: 41/51(80%) versus 37/51 (73%) (p = 0.046) and 35/50 (70%) (p = 0.03). Reformatted 3D CE-VW was significantly more specific than 2D CE-VW: 27/27 (100%) versus 22/26 (85%) (p = 0.04). 3D CE-VW showed higher sensitivity than 2D CE-VW when detecting inflammatory changes of intracranial arteries: 10/51(20%) versus 4/50(8%), p = 0.01. Interobserver agreement was excellent for both 2D and 3D CE-VW MRI: \u03ba = 0.84 and 0.82 respectively.Conclusions3D CE-VW MRI supported more accurate diagnoses of GCA than 2D CE-VW.Key Points\u2022 3D contrast-enhanced vessel-wall magnetic resonance imaging is a high accuracy, non-invasive diagnostic tool used to diagnose giant cell arteritis.\u2022 3D contrast-enhanced vessel-wall imaging is feasible for clinicians to complete within a relatively short time, allowing immediate assessment of extra and intracranial arteries.\u2022 3D contrast-enhanced vessel-wall magnetic resonance imaging might be considered a diagnostic tool when intracranial manifestation of GCA is suspected.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-019-06536-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "keywords": [
      "giant cell arteritis", 
      "vessel wall magnetic resonance imaging", 
      "inflammatory changes", 
      "intracranial arteries", 
      "magnetic resonance imaging", 
      "cell arteritis", 
      "extracranial arteries", 
      "resonance imaging", 
      "diagnostic accuracy", 
      "diagnosis of GCA", 
      "two-center study", 
      "primary judgment criterion", 
      "vessel wall magnetic resonance", 
      "Secondary judgment criteria", 
      "non-invasive diagnostic tool", 
      "diagnostic tool", 
      "vessel wall MRI", 
      "vessel wall imaging", 
      "intracranial manifestations", 
      "Research Ethics Board", 
      "final diagnosis", 
      "clinical data", 
      "artery", 
      "accurate diagnosis", 
      "McNemar test", 
      "interobserver agreement", 
      "MRI", 
      "diagnosis", 
      "immediate assessment", 
      "Ethics Board", 
      "arteritis", 
      "axial plane", 
      "magnetic resonance", 
      "imaging", 
      "presence of artifacts", 
      "participants", 
      "MethodsThis", 
      "patients", 
      "clinicians", 
      "ObjectivesTo", 
      "neuroradiologists", 
      "manifestations", 
      "criteria", 
      "study", 
      "judgment criteria", 
      "changes", 
      "test", 
      "presence", 
      "high sensitivity", 
      "assessment", 
      "GCA", 
      "short time", 
      "protocol", 
      "sensitivity", 
      "tool", 
      "data", 
      "time", 
      "accuracy", 
      "resonance", 
      "board", 
      "sequence", 
      "order 2d", 
      "artifacts", 
      "high accuracy", 
      "agreement", 
      "plane"
    ], 
    "name": "Increased diagnostic accuracy of giant cell arteritis using three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance imaging at 3 T", 
    "pagination": "1866-1875", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1123190712"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06536-7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31811430"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06536-7", 
      "https://app.dimensions.ai/details/publication/pub.1123190712"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_806.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-019-06536-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06536-7'


 

This table displays all metadata directly associated to this object as RDF triples.

295 TRIPLES      21 PREDICATES      106 URIs      98 LITERALS      21 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06536-7 schema:about N0089a2a3b9704f938bd44cb5a8e59121
2 N2cde2e6f59a248dfaf3f84631d85d3d8
3 N2f836559852e4fee81bf316d82fa03a1
4 N30f6ab50756e493f95cc790dec2d3ba4
5 N6482fb1d3779475b91ad6fbbf49153e7
6 N6539fcf0f4bc47c88aeb8fbc32e0fc5b
7 N7637643bdb9d4b6cad3cbf2239c95d7c
8 N813b1b7899ef454d8f7689473a40554f
9 Nab947ac600834cf19973ad8c888fdae4
10 Nad587021691a42ab8fe31a197aae7e37
11 Nc3316fe175e344c9aae5c085965f988a
12 Ncfb45228707a4afeb2ed7d8f5dedb703
13 Nd345a12545a9406c8aee76d72887c50c
14 Ne9ef567687724bb39a8863493add9878
15 anzsrc-for:11
16 anzsrc-for:1103
17 schema:author N1276dc9b42ca44aa93d1927ca534c5b8
18 schema:datePublished 2019-12-06
19 schema:datePublishedReg 2019-12-06
20 schema:description ObjectivesTo compare the diagnostic accuracy of 3D versus 2D contrast-enhanced vessel-wall (CE-VW) MRI of extracranial and intracranial arteries in the diagnosis of GCA.MethodsThis prospective two-center study was approved by a national research ethics board and enrolled participants from December 2014 to October 2017. A protocol including both a 2D and a 3D CE-VW MRI at 3 T was performed in all patients. Two neuroradiologists, blinded to clinical data, individually analyzed separately and in random order 2D and 3D sequences in the axial plane only or with reformatting. The primary judgment criterion was the presence of GCA-related inflammatory changes of extracranial arteries. Secondary judgment criteria included inflammatory changes of intracranial arteries and the presence of artifacts. A McNemar’s test was used to compare 2D to 3D CE-VW MRIs.ResultsSeventy-nine participants were included in the study (42 men and 37 women, mean age 75 (± 9.5 years)). Fifty-one had a final diagnosis of GCA. Reformatted 3D CE-VW was significantly more sensitive than axial-only 3D CE-VW or 2D CE-VW when showing inflammatory change of extracranial arteries: 41/51(80%) versus 37/51 (73%) (p = 0.046) and 35/50 (70%) (p = 0.03). Reformatted 3D CE-VW was significantly more specific than 2D CE-VW: 27/27 (100%) versus 22/26 (85%) (p = 0.04). 3D CE-VW showed higher sensitivity than 2D CE-VW when detecting inflammatory changes of intracranial arteries: 10/51(20%) versus 4/50(8%), p = 0.01. Interobserver agreement was excellent for both 2D and 3D CE-VW MRI: κ = 0.84 and 0.82 respectively.Conclusions3D CE-VW MRI supported more accurate diagnoses of GCA than 2D CE-VW.Key Points• 3D contrast-enhanced vessel-wall magnetic resonance imaging is a high accuracy, non-invasive diagnostic tool used to diagnose giant cell arteritis.• 3D contrast-enhanced vessel-wall imaging is feasible for clinicians to complete within a relatively short time, allowing immediate assessment of extra and intracranial arteries.• 3D contrast-enhanced vessel-wall magnetic resonance imaging might be considered a diagnostic tool when intracranial manifestation of GCA is suspected.
21 schema:genre article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N3071f968e9dc4778b4dc441a9829312d
25 Nb643ad9fa1934f67a9f832a730fa159f
26 sg:journal.1289120
27 schema:keywords Ethics Board
28 GCA
29 MRI
30 McNemar test
31 MethodsThis
32 ObjectivesTo
33 Research Ethics Board
34 Secondary judgment criteria
35 accuracy
36 accurate diagnosis
37 agreement
38 arteritis
39 artery
40 artifacts
41 assessment
42 axial plane
43 board
44 cell arteritis
45 changes
46 clinical data
47 clinicians
48 criteria
49 data
50 diagnosis
51 diagnosis of GCA
52 diagnostic accuracy
53 diagnostic tool
54 extracranial arteries
55 final diagnosis
56 giant cell arteritis
57 high accuracy
58 high sensitivity
59 imaging
60 immediate assessment
61 inflammatory changes
62 interobserver agreement
63 intracranial arteries
64 intracranial manifestations
65 judgment criteria
66 magnetic resonance
67 magnetic resonance imaging
68 manifestations
69 neuroradiologists
70 non-invasive diagnostic tool
71 order 2d
72 participants
73 patients
74 plane
75 presence
76 presence of artifacts
77 primary judgment criterion
78 protocol
79 resonance
80 resonance imaging
81 sensitivity
82 sequence
83 short time
84 study
85 test
86 time
87 tool
88 two-center study
89 vessel wall MRI
90 vessel wall imaging
91 vessel wall magnetic resonance
92 vessel wall magnetic resonance imaging
93 schema:name Increased diagnostic accuracy of giant cell arteritis using three-dimensional fat-saturated contrast-enhanced vessel-wall magnetic resonance imaging at 3 T
94 schema:pagination 1866-1875
95 schema:productId N96f000f7924c4591b442fac279b3e7f2
96 N9b6c694a2ec94971a5c46a847cc96bc8
97 Nf73bbbff1eb44b998d4bb83c5fb6b0b6
98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1123190712
99 https://doi.org/10.1007/s00330-019-06536-7
100 schema:sdDatePublished 2022-05-20T07:35
101 schema:sdLicense https://scigraph.springernature.com/explorer/license/
102 schema:sdPublisher N070b3cf97e6d448281ae5596df5b1a4d
103 schema:url https://doi.org/10.1007/s00330-019-06536-7
104 sgo:license sg:explorer/license/
105 sgo:sdDataset articles
106 rdf:type schema:ScholarlyArticle
107 N0089a2a3b9704f938bd44cb5a8e59121 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Temporal Arteries
109 rdf:type schema:DefinedTerm
110 N01cbb300be8f496cb29f9bb55fc52f33 rdf:first sg:person.01350130373.59
111 rdf:rest N029023b74f54490ca1999464df1a4fb8
112 N029023b74f54490ca1999464df1a4fb8 rdf:first sg:person.01245726047.13
113 rdf:rest Na20b28b09f6c470c85661ce22c8a68ee
114 N070b3cf97e6d448281ae5596df5b1a4d schema:name Springer Nature - SN SciGraph project
115 rdf:type schema:Organization
116 N0aaa06cd2a1f4d8d907d91bd3b710d49 rdf:first sg:person.010262335434.89
117 rdf:rest N3e74abd4e454423ea6e42db0e2c34974
118 N0ea84133a8074163991415b925144a32 rdf:first sg:person.014513766571.96
119 rdf:rest N61b63cd978bd433b845f485015b9020c
120 N1276dc9b42ca44aa93d1927ca534c5b8 rdf:first sg:person.012043451130.42
121 rdf:rest N8dd3fc4a9e6742159901df68df331358
122 N21abc6c172f94b0382289b0a41bf3d02 rdf:first sg:person.012131452214.43
123 rdf:rest N0aaa06cd2a1f4d8d907d91bd3b710d49
124 N2cde2e6f59a248dfaf3f84631d85d3d8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Sensitivity and Specificity
126 rdf:type schema:DefinedTerm
127 N2f836559852e4fee81bf316d82fa03a1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Aged
129 rdf:type schema:DefinedTerm
130 N3071f968e9dc4778b4dc441a9829312d schema:volumeNumber 30
131 rdf:type schema:PublicationVolume
132 N30f6ab50756e493f95cc790dec2d3ba4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Giant Cell Arteritis
134 rdf:type schema:DefinedTerm
135 N3e74abd4e454423ea6e42db0e2c34974 rdf:first sg:person.0737233715.96
136 rdf:rest Nc047dc0a32d84cb8befd419dd55a8dce
137 N61b63cd978bd433b845f485015b9020c rdf:first sg:person.01366635734.39
138 rdf:rest Ndeedabddab4043b9803ef448ba126fc6
139 N6482fb1d3779475b91ad6fbbf49153e7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Male
141 rdf:type schema:DefinedTerm
142 N6539fcf0f4bc47c88aeb8fbc32e0fc5b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Magnetic Resonance Imaging
144 rdf:type schema:DefinedTerm
145 N75feea7683034a9c825c0879f2d0b1c3 rdf:first sg:person.013202254465.75
146 rdf:rest rdf:nil
147 N7637643bdb9d4b6cad3cbf2239c95d7c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
148 schema:name Female
149 rdf:type schema:DefinedTerm
150 N813b1b7899ef454d8f7689473a40554f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Humans
152 rdf:type schema:DefinedTerm
153 N8dd3fc4a9e6742159901df68df331358 rdf:first sg:person.012213541573.82
154 rdf:rest N01cbb300be8f496cb29f9bb55fc52f33
155 N96f000f7924c4591b442fac279b3e7f2 schema:name doi
156 schema:value 10.1007/s00330-019-06536-7
157 rdf:type schema:PropertyValue
158 N9b6c694a2ec94971a5c46a847cc96bc8 schema:name pubmed_id
159 schema:value 31811430
160 rdf:type schema:PropertyValue
161 N9fe92a1d6be24b0189570d9a73ac035c rdf:first sg:person.0673247445.80
162 rdf:rest Nfe1a827c2d7a47a187dedf37e27fc74f
163 Na20b28b09f6c470c85661ce22c8a68ee rdf:first sg:person.01346477626.47
164 rdf:rest N21abc6c172f94b0382289b0a41bf3d02
165 Nab947ac600834cf19973ad8c888fdae4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
166 schema:name Aged, 80 and over
167 rdf:type schema:DefinedTerm
168 Nad587021691a42ab8fe31a197aae7e37 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
169 schema:name Imaging, Three-Dimensional
170 rdf:type schema:DefinedTerm
171 Nb643ad9fa1934f67a9f832a730fa159f schema:issueNumber 4
172 rdf:type schema:PublicationIssue
173 Nc047dc0a32d84cb8befd419dd55a8dce rdf:first sg:person.01000176674.73
174 rdf:rest N0ea84133a8074163991415b925144a32
175 Nc3316fe175e344c9aae5c085965f988a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
176 schema:name Prospective Studies
177 rdf:type schema:DefinedTerm
178 Ncfb45228707a4afeb2ed7d8f5dedb703 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Contrast Media
180 rdf:type schema:DefinedTerm
181 Nd345a12545a9406c8aee76d72887c50c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
182 schema:name Organometallic Compounds
183 rdf:type schema:DefinedTerm
184 Ndeedabddab4043b9803ef448ba126fc6 rdf:first sg:person.0611777220.06
185 rdf:rest N9fe92a1d6be24b0189570d9a73ac035c
186 Ne9ef567687724bb39a8863493add9878 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
187 schema:name Middle Aged
188 rdf:type schema:DefinedTerm
189 Nf73bbbff1eb44b998d4bb83c5fb6b0b6 schema:name dimensions_id
190 schema:value pub.1123190712
191 rdf:type schema:PropertyValue
192 Nfe1a827c2d7a47a187dedf37e27fc74f rdf:first sg:person.01303561430.45
193 rdf:rest N75feea7683034a9c825c0879f2d0b1c3
194 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
195 schema:name Medical and Health Sciences
196 rdf:type schema:DefinedTerm
197 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
198 schema:name Clinical Sciences
199 rdf:type schema:DefinedTerm
200 sg:journal.1289120 schema:issn 0938-7994
201 1432-1084
202 schema:name European Radiology
203 schema:publisher Springer Nature
204 rdf:type schema:Periodical
205 sg:person.01000176674.73 schema:affiliation grid-institutes:grid.414318.b
206 schema:familyName Vignal
207 schema:givenName Catherine
208 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000176674.73
209 rdf:type schema:Person
210 sg:person.010262335434.89 schema:affiliation grid-institutes:grid.414318.b
211 schema:familyName Zuber
212 schema:givenName Kevin
213 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010262335434.89
214 rdf:type schema:Person
215 sg:person.012043451130.42 schema:affiliation grid-institutes:grid.41724.34
216 schema:familyName Poillon
217 schema:givenName Guillaume
218 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043451130.42
219 rdf:type schema:Person
220 sg:person.012131452214.43 schema:affiliation grid-institutes:grid.41724.34
221 schema:familyName Pinson
222 schema:givenName Cécile
223 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012131452214.43
224 rdf:type schema:Person
225 sg:person.012213541573.82 schema:affiliation grid-institutes:None
226 schema:familyName Collin
227 schema:givenName Adrien
228 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012213541573.82
229 rdf:type schema:Person
230 sg:person.01245726047.13 schema:affiliation grid-institutes:grid.414318.b
231 schema:familyName Clavel
232 schema:givenName Gaëlle
233 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01245726047.13
234 rdf:type schema:Person
235 sg:person.01303561430.45 schema:affiliation grid-institutes:grid.41724.34
236 schema:familyName Gerardin
237 schema:givenName Emmanuel
238 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01303561430.45
239 rdf:type schema:Person
240 sg:person.013202254465.75 schema:affiliation grid-institutes:None
241 schema:familyName Lecler
242 schema:givenName Augustin
243 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013202254465.75
244 rdf:type schema:Person
245 sg:person.01346477626.47 schema:affiliation grid-institutes:None
246 schema:familyName Savatovsky
247 schema:givenName Julien
248 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01346477626.47
249 rdf:type schema:Person
250 sg:person.01350130373.59 schema:affiliation grid-institutes:grid.41724.34
251 schema:familyName Benhamou
252 schema:givenName Ygal
253 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01350130373.59
254 rdf:type schema:Person
255 sg:person.01366635734.39 schema:affiliation grid-institutes:grid.414318.b
256 schema:familyName Leturcq
257 schema:givenName Tifenn
258 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366635734.39
259 rdf:type schema:Person
260 sg:person.014513766571.96 schema:affiliation grid-institutes:grid.414318.b
261 schema:familyName Picard
262 schema:givenName Hervé
263 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014513766571.96
264 rdf:type schema:Person
265 sg:person.0611777220.06 schema:affiliation grid-institutes:grid.41724.34
266 schema:familyName Miranda
267 schema:givenName Sébastien
268 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0611777220.06
269 rdf:type schema:Person
270 sg:person.0673247445.80 schema:affiliation grid-institutes:grid.414318.b
271 schema:familyName Sené
272 schema:givenName Thomas
273 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0673247445.80
274 rdf:type schema:Person
275 sg:person.0737233715.96 schema:affiliation grid-institutes:None
276 schema:familyName Charbonneau
277 schema:givenName Frédérique
278 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0737233715.96
279 rdf:type schema:Person
280 grid-institutes:None schema:alternateName Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France
281 schema:name Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France
282 rdf:type schema:Organization
283 grid-institutes:grid.414318.b schema:alternateName Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France
284 Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France
285 Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France
286 schema:name Department of Clinical Research, Foundation Adolphe de Rothschild Hospital, Paris, France
287 Department of Internal Medicine, Foundation Adolphe de Rothschild Hospital, Paris, France
288 Department of Ophthalmology, Foundation Adolphe de Rothschild Hospital, Paris, France
289 rdf:type schema:Organization
290 grid-institutes:grid.41724.34 schema:alternateName Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France
291 Department of Neuroradiology, Rouen University Hospital, Rouen, France
292 schema:name Department of Internal Medicine, Rouen University Hospital, Normandie Univ, UNIROUEN, INSERM U1096, Rouen, France
293 Department of Neuroradiology, Foundation Adolphe de Rothschild Hospital, 29 rue Manin, 75019, Paris, France
294 Department of Neuroradiology, Rouen University Hospital, Rouen, France
295 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...