Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05-21

AUTHORS

Yeon-koo Kang, Joon Young Choi, Jin Chul Paeng, Yong-il Kim, Hyun Woo Kwon, Gi Jeong Cheon, Kyung-Suk Suh, Choon Hyuck David Kwon, Dong Soo Lee, Keon Wook Kang

ABSTRACT

ObjectivesFluorodeoxyglucose (FDG) PET/CT is effective for predicting recurrence of hepatocellular carcinoma after liver transplantation. This study aimed to design composite criteria for predicting post-transplantation recurrence using clinical and FDG PET/CT factors.MethodsWe retrospectively enrolled 239 patients who underwent living donor transplantation in two independent centers between 2005 and 2013. On PET, maximum tumor-to-background ratio (TBRmax) was measured. Significant predictors for recurrence were selected by logistic regression and survival analyses. With varying cutoff values for the selected factors, composite criteria were designed to maximize the predictive performance for recurrence, and tenfold cross-validation was performed. Predictive values were compared between the composite criteria and the conventional recipient selection criteria.ResultsTumor size, number, alpha-fetoprotein, and TBRmax were selected as significant predictors in both logistic regression and multivariate survival analyses. In combination of these factors, the highest diagnostic performance was sensitivity of 75.7% and specificity of 88.5% with cutoff values of tumor size < 6.0 cm, tumor number < 8, alpha-fetoprotein < 465 ng/mL, and TBRmax < 2.8. The composite criteria exhibited the highest performance for predicting recurrence and recurrence-free survival among the tested criteria including conventional ones.ConclusionsThe composite criteria adding FDG PET findings to clinical factors are effective in selecting appropriate liver cancer patients who are candidates for liver transplantation.Key Points• In patients with HCC, tumor uptake on FDG PET/CT, tumor size, number, and serum AFP level are recognized individual predictors for tumor recurrence after LT.• A composite criterion set, combining tumor size, number, serum AFP level, and maximum tumor-to-background ratio (TBRmax), predicts post-LT recurrence most effectively when compared with conventional criteria sets in selecting candidates for living donor LT. More... »

PAGES

6009-6017

Journal

TITLE

European Radiology

ISSUE

11

VOLUME

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z

DOI

http://dx.doi.org/10.1007/s00330-019-06239-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1115024073

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31115626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Living Donors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "alpha-Fetoproteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Yeon-koo", 
        "id": "sg:person.014562370740.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562370740.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Joon Young", 
        "id": "sg:person.01315246161.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315246161.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yong-il", 
        "id": "sg:person.01001337521.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.411134.2", 
          "name": [
            "Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Hyun Woo", 
        "id": "sg:person.01217110670.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217110670.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Kyung-Suk", 
        "id": "sg:person.01166661455.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166661455.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Choon Hyuck David", 
        "id": "sg:person.013334305237.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334305237.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf01659064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049278373", 
          "https://doi.org/10.1007/bf01659064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5425-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104541905", 
          "https://doi.org/10.1007/s00330-018-5425-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-14430-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092353379", 
          "https://doi.org/10.1038/s41598-017-14430-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3348-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040784473", 
          "https://doi.org/10.1007/s00259-016-3348-y"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-21", 
    "datePublishedReg": "2019-05-21", 
    "description": "ObjectivesFluorodeoxyglucose (FDG) PET/CT is effective for predicting recurrence of hepatocellular carcinoma after liver transplantation. This study aimed to design composite criteria for predicting post-transplantation recurrence using clinical and FDG PET/CT factors.MethodsWe retrospectively enrolled 239 patients who underwent living donor transplantation in two independent centers between 2005 and 2013. On PET, maximum tumor-to-background ratio (TBRmax) was measured. Significant predictors for recurrence were selected by logistic regression and survival analyses. With varying cutoff values for the selected factors, composite criteria were designed to maximize the predictive performance for recurrence, and tenfold cross-validation was performed. Predictive values were compared between the composite criteria and the conventional recipient selection criteria.ResultsTumor size, number, alpha-fetoprotein, and TBRmax were selected as significant predictors in both logistic regression and multivariate survival analyses. In combination of these factors, the highest diagnostic performance was sensitivity of 75.7% and specificity of 88.5% with cutoff values of tumor size <\u20096.0\u00a0cm, tumor number <\u20098, alpha-fetoprotein <\u2009465\u00a0ng/mL, and TBRmax <\u20092.8. The composite criteria exhibited the highest performance for predicting recurrence and recurrence-free survival among the tested criteria including conventional ones.ConclusionsThe composite criteria adding FDG PET findings to clinical factors are effective in selecting appropriate liver cancer patients who are candidates for liver transplantation.Key Points\u2022 In patients with HCC, tumor uptake on FDG PET/CT, tumor size, number, and serum AFP level are recognized individual predictors for tumor recurrence after LT.\u2022 A composite criterion set, combining tumor size, number, serum AFP level, and maximum tumor-to-background ratio (TBRmax), predicts post-LT recurrence most effectively when compared with conventional criteria sets in selecting candidates for living donor LT.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-019-06239-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "serum AFP level", 
      "PET/CT", 
      "liver transplantation", 
      "tumor size", 
      "AFP levels", 
      "maximum tumor", 
      "hepatocellular carcinoma", 
      "cutoff value", 
      "alpha-fetoprotein", 
      "survival analysis", 
      "logistic regression", 
      "FDG PET/CT", 
      "composite criterion", 
      "CT factors", 
      "post-transplantation recurrence", 
      "donor liver transplantation", 
      "recurrence-free survival", 
      "FDG-PET findings", 
      "multivariate survival analysis", 
      "significant predictors", 
      "recipient selection criteria", 
      "liver cancer patients", 
      "criteria sets", 
      "high diagnostic performance", 
      "ResultsTumor size", 
      "LT recurrence", 
      "donor LT", 
      "donor transplantation", 
      "PET findings", 
      "clinical factors", 
      "tumor number", 
      "cancer patients", 
      "tumor recurrence", 
      "recurrence", 
      "tumor uptake", 
      "predictive value", 
      "transplantation", 
      "patients", 
      "diagnostic performance", 
      "carcinoma", 
      "TBRmax", 
      "tumors", 
      "independent centers", 
      "background ratio", 
      "predictors", 
      "CT", 
      "lt", 
      "individual predictors", 
      "selection criteria", 
      "factors", 
      "regression", 
      "criteria", 
      "MethodsWe", 
      "HCC", 
      "survival", 
      "levels", 
      "predictive performance", 
      "PET", 
      "specificity", 
      "findings", 
      "number", 
      "uptake", 
      "candidates", 
      "center", 
      "study", 
      "ratio", 
      "sensitivity", 
      "analysis", 
      "tenfold", 
      "values", 
      "combination", 
      "size", 
      "validation", 
      "one", 
      "performance", 
      "set", 
      "conventional one", 
      "high performance"
    ], 
    "name": "Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation", 
    "pagination": "6009-6017", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1115024073"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06239-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31115626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06239-z", 
      "https://app.dimensions.ai/details/publication/pub.1115024073"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_822.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-019-06239-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'


 

This table displays all metadata directly associated to this object as RDF triples.

321 TRIPLES      21 PREDICATES      128 URIs      116 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06239-z schema:about N03cbb0f2d6224ae4b64b73de5c6d7102
2 N07ee3b7df3a14303a4c52d3f190ecd8b
3 N09f93ab6c3ad41d1903de3dc325e1d62
4 N2be783179c09459cbe8d6cf4324d1d3b
5 N3b3573cb2761456ebfa3481141d0cba0
6 N3cb664be26e64ccebd1780c16d7b9928
7 N460bea9cf6dc4479aa72d3f952c01ea6
8 N533a02fed87349fe83ed5bbb4c8cffeb
9 N5bd64bf522624821ae06dfbac7df4323
10 N69373d0171f1490a983acba707930d36
11 N6da745ca6a7c4c0296b4a74105c28064
12 N6e28a969ef8e41128384459f1ba03b1c
13 N89596ec4d0f2450a8000775a95201d47
14 Na0f50b7000c040568dffef34bfcf6939
15 Na61f8a9e194b414dbbeebf2dfe04b13c
16 Na9137fb8d36f4487a6838e17f110fc21
17 Na975dd1ec72f4dd7bdf4a333fecc1a69
18 Nac41e60746b34b70842fc7da942a8ffc
19 Naf4c442bc8a9406d8a37e060a3b15c8d
20 Nc74df7e85af946a78d83538266cb17f0
21 Ne89013b835fc464a9b6a010ab738fb86
22 anzsrc-for:11
23 anzsrc-for:1112
24 schema:author Ned753451f09646e9b9a2f7ec53e47dee
25 schema:citation sg:pub.10.1007/bf01659064
26 sg:pub.10.1007/s00259-016-3348-y
27 sg:pub.10.1007/s00330-018-5425-z
28 sg:pub.10.1038/s41598-017-14430-9
29 schema:datePublished 2019-05-21
30 schema:datePublishedReg 2019-05-21
31 schema:description ObjectivesFluorodeoxyglucose (FDG) PET/CT is effective for predicting recurrence of hepatocellular carcinoma after liver transplantation. This study aimed to design composite criteria for predicting post-transplantation recurrence using clinical and FDG PET/CT factors.MethodsWe retrospectively enrolled 239 patients who underwent living donor transplantation in two independent centers between 2005 and 2013. On PET, maximum tumor-to-background ratio (TBRmax) was measured. Significant predictors for recurrence were selected by logistic regression and survival analyses. With varying cutoff values for the selected factors, composite criteria were designed to maximize the predictive performance for recurrence, and tenfold cross-validation was performed. Predictive values were compared between the composite criteria and the conventional recipient selection criteria.ResultsTumor size, number, alpha-fetoprotein, and TBRmax were selected as significant predictors in both logistic regression and multivariate survival analyses. In combination of these factors, the highest diagnostic performance was sensitivity of 75.7% and specificity of 88.5% with cutoff values of tumor size < 6.0 cm, tumor number < 8, alpha-fetoprotein < 465 ng/mL, and TBRmax < 2.8. The composite criteria exhibited the highest performance for predicting recurrence and recurrence-free survival among the tested criteria including conventional ones.ConclusionsThe composite criteria adding FDG PET findings to clinical factors are effective in selecting appropriate liver cancer patients who are candidates for liver transplantation.Key Points• In patients with HCC, tumor uptake on FDG PET/CT, tumor size, number, and serum AFP level are recognized individual predictors for tumor recurrence after LT.• A composite criterion set, combining tumor size, number, serum AFP level, and maximum tumor-to-background ratio (TBRmax), predicts post-LT recurrence most effectively when compared with conventional criteria sets in selecting candidates for living donor LT.
32 schema:genre article
33 schema:isAccessibleForFree false
34 schema:isPartOf Na0dc4503aabd4a26adc1fbe847b73474
35 Nb05aa0b5e2ce4c0a9e354f64b0f88466
36 sg:journal.1289120
37 schema:keywords AFP levels
38 CT
39 CT factors
40 FDG PET/CT
41 FDG-PET findings
42 HCC
43 LT recurrence
44 MethodsWe
45 PET
46 PET findings
47 PET/CT
48 ResultsTumor size
49 TBRmax
50 alpha-fetoprotein
51 analysis
52 background ratio
53 cancer patients
54 candidates
55 carcinoma
56 center
57 clinical factors
58 combination
59 composite criterion
60 conventional one
61 criteria
62 criteria sets
63 cutoff value
64 diagnostic performance
65 donor LT
66 donor liver transplantation
67 donor transplantation
68 factors
69 findings
70 hepatocellular carcinoma
71 high diagnostic performance
72 high performance
73 independent centers
74 individual predictors
75 levels
76 liver cancer patients
77 liver transplantation
78 logistic regression
79 lt
80 maximum tumor
81 multivariate survival analysis
82 number
83 one
84 patients
85 performance
86 post-transplantation recurrence
87 predictive performance
88 predictive value
89 predictors
90 ratio
91 recipient selection criteria
92 recurrence
93 recurrence-free survival
94 regression
95 selection criteria
96 sensitivity
97 serum AFP level
98 set
99 significant predictors
100 size
101 specificity
102 study
103 survival
104 survival analysis
105 tenfold
106 transplantation
107 tumor number
108 tumor recurrence
109 tumor size
110 tumor uptake
111 tumors
112 uptake
113 validation
114 values
115 schema:name Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation
116 schema:pagination 6009-6017
117 schema:productId N81b882f022b448a49509ba99ca0c342d
118 N89fa6a94fd7c4c74a9ba4407bff72741
119 Ne0e6713c10104b4c8d150266b8afe6ed
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115024073
121 https://doi.org/10.1007/s00330-019-06239-z
122 schema:sdDatePublished 2022-10-01T06:46
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N9b0efee9f2bf4caab8f6f7b5ab674fde
125 schema:url https://doi.org/10.1007/s00330-019-06239-z
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N03cbb0f2d6224ae4b64b73de5c6d7102 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
130 schema:name Patient Selection
131 rdf:type schema:DefinedTerm
132 N07ee3b7df3a14303a4c52d3f190ecd8b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Living Donors
134 rdf:type schema:DefinedTerm
135 N09f93ab6c3ad41d1903de3dc325e1d62 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
136 schema:name Retrospective Studies
137 rdf:type schema:DefinedTerm
138 N296d2b0e75d641bfb5f505c60e1b23c4 rdf:first sg:person.0761746266.86
139 rdf:rest rdf:nil
140 N2abe8568c25c4d508e280b8d6842bd6e rdf:first sg:person.01166661455.74
141 rdf:rest N46f9ddd860674ed4aa53180c8e61649a
142 N2be783179c09459cbe8d6cf4324d1d3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Biomarkers, Tumor
144 rdf:type schema:DefinedTerm
145 N3715203d243a477c8e0286749ef1a174 rdf:first sg:person.015617314175.88
146 rdf:rest N296d2b0e75d641bfb5f505c60e1b23c4
147 N37a5fc9a73624425acdd69ae5f1ba77a rdf:first sg:person.01333472502.31
148 rdf:rest N2abe8568c25c4d508e280b8d6842bd6e
149 N3b3573cb2761456ebfa3481141d0cba0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
150 schema:name Young Adult
151 rdf:type schema:DefinedTerm
152 N3cb664be26e64ccebd1780c16d7b9928 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
153 schema:name Carcinoma, Hepatocellular
154 rdf:type schema:DefinedTerm
155 N460bea9cf6dc4479aa72d3f952c01ea6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
156 schema:name Neoplasm Recurrence, Local
157 rdf:type schema:DefinedTerm
158 N46f9ddd860674ed4aa53180c8e61649a rdf:first sg:person.013334305237.03
159 rdf:rest N3715203d243a477c8e0286749ef1a174
160 N533a02fed87349fe83ed5bbb4c8cffeb schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
161 schema:name alpha-Fetoproteins
162 rdf:type schema:DefinedTerm
163 N5bd64bf522624821ae06dfbac7df4323 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
164 schema:name Liver Transplantation
165 rdf:type schema:DefinedTerm
166 N69373d0171f1490a983acba707930d36 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Male
168 rdf:type schema:DefinedTerm
169 N6da745ca6a7c4c0296b4a74105c28064 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
170 schema:name Liver Neoplasms
171 rdf:type schema:DefinedTerm
172 N6e28a969ef8e41128384459f1ba03b1c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
173 schema:name Female
174 rdf:type schema:DefinedTerm
175 N81b882f022b448a49509ba99ca0c342d schema:name pubmed_id
176 schema:value 31115626
177 rdf:type schema:PropertyValue
178 N89596ec4d0f2450a8000775a95201d47 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
179 schema:name Survival Analysis
180 rdf:type schema:DefinedTerm
181 N89fa6a94fd7c4c74a9ba4407bff72741 schema:name dimensions_id
182 schema:value pub.1115024073
183 rdf:type schema:PropertyValue
184 N9b0efee9f2bf4caab8f6f7b5ab674fde schema:name Springer Nature - SN SciGraph project
185 rdf:type schema:Organization
186 Na0dc4503aabd4a26adc1fbe847b73474 schema:volumeNumber 29
187 rdf:type schema:PublicationVolume
188 Na0f50b7000c040568dffef34bfcf6939 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Radiopharmaceuticals
190 rdf:type schema:DefinedTerm
191 Na61f8a9e194b414dbbeebf2dfe04b13c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
192 schema:name Middle Aged
193 rdf:type schema:DefinedTerm
194 Na812236cbc4e47e0b38e916f1e5dc253 rdf:first sg:person.01217110670.08
195 rdf:rest N37a5fc9a73624425acdd69ae5f1ba77a
196 Na9137fb8d36f4487a6838e17f110fc21 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name Humans
198 rdf:type schema:DefinedTerm
199 Na975dd1ec72f4dd7bdf4a333fecc1a69 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Positron Emission Tomography Computed Tomography
201 rdf:type schema:DefinedTerm
202 Nac41e60746b34b70842fc7da942a8ffc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Sensitivity and Specificity
204 rdf:type schema:DefinedTerm
205 Naf4c442bc8a9406d8a37e060a3b15c8d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
206 schema:name Fluorodeoxyglucose F18
207 rdf:type schema:DefinedTerm
208 Nb05aa0b5e2ce4c0a9e354f64b0f88466 schema:issueNumber 11
209 rdf:type schema:PublicationIssue
210 Nb4969f03709e43cab327054d57bc584a rdf:first sg:person.01343511335.32
211 rdf:rest Ncf60b716d3fb4fb7863fc0b004c39b08
212 Nc74df7e85af946a78d83538266cb17f0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
213 schema:name Aged
214 rdf:type schema:DefinedTerm
215 Ncf60b716d3fb4fb7863fc0b004c39b08 rdf:first sg:person.01001337521.67
216 rdf:rest Na812236cbc4e47e0b38e916f1e5dc253
217 Ne0e6713c10104b4c8d150266b8afe6ed schema:name doi
218 schema:value 10.1007/s00330-019-06239-z
219 rdf:type schema:PropertyValue
220 Ne89013b835fc464a9b6a010ab738fb86 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
221 schema:name Adult
222 rdf:type schema:DefinedTerm
223 Ned753451f09646e9b9a2f7ec53e47dee rdf:first sg:person.014562370740.06
224 rdf:rest Nfa33a32e9f214a41b76d18c08a2468cb
225 Nfa33a32e9f214a41b76d18c08a2468cb rdf:first sg:person.01315246161.59
226 rdf:rest Nb4969f03709e43cab327054d57bc584a
227 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
228 schema:name Medical and Health Sciences
229 rdf:type schema:DefinedTerm
230 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
231 schema:name Oncology and Carcinogenesis
232 rdf:type schema:DefinedTerm
233 sg:journal.1289120 schema:issn 0938-7994
234 1432-1084
235 schema:name European Radiology
236 schema:publisher Springer Nature
237 rdf:type schema:Periodical
238 sg:person.01001337521.67 schema:affiliation grid-institutes:grid.413967.e
239 schema:familyName Kim
240 schema:givenName Yong-il
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67
242 rdf:type schema:Person
243 sg:person.01166661455.74 schema:affiliation grid-institutes:grid.31501.36
244 schema:familyName Suh
245 schema:givenName Kyung-Suk
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166661455.74
247 rdf:type schema:Person
248 sg:person.01217110670.08 schema:affiliation grid-institutes:grid.411134.2
249 schema:familyName Kwon
250 schema:givenName Hyun Woo
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217110670.08
252 rdf:type schema:Person
253 sg:person.01315246161.59 schema:affiliation grid-institutes:grid.264381.a
254 schema:familyName Choi
255 schema:givenName Joon Young
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315246161.59
257 rdf:type schema:Person
258 sg:person.013334305237.03 schema:affiliation grid-institutes:grid.264381.a
259 schema:familyName Kwon
260 schema:givenName Choon Hyuck David
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334305237.03
262 rdf:type schema:Person
263 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
264 schema:familyName Cheon
265 schema:givenName Gi Jeong
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
267 rdf:type schema:Person
268 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
269 schema:familyName Paeng
270 schema:givenName Jin Chul
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
272 rdf:type schema:Person
273 sg:person.014562370740.06 schema:affiliation grid-institutes:grid.31501.36
274 schema:familyName Kang
275 schema:givenName Yeon-koo
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562370740.06
277 rdf:type schema:Person
278 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
279 schema:familyName Lee
280 schema:givenName Dong Soo
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
282 rdf:type schema:Person
283 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
284 schema:familyName Kang
285 schema:givenName Keon Wook
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
287 rdf:type schema:Person
288 sg:pub.10.1007/bf01659064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049278373
289 https://doi.org/10.1007/bf01659064
290 rdf:type schema:CreativeWork
291 sg:pub.10.1007/s00259-016-3348-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040784473
292 https://doi.org/10.1007/s00259-016-3348-y
293 rdf:type schema:CreativeWork
294 sg:pub.10.1007/s00330-018-5425-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104541905
295 https://doi.org/10.1007/s00330-018-5425-z
296 rdf:type schema:CreativeWork
297 sg:pub.10.1038/s41598-017-14430-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092353379
298 https://doi.org/10.1038/s41598-017-14430-9
299 rdf:type schema:CreativeWork
300 grid-institutes:grid.264381.a schema:alternateName Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
301 Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
302 schema:name Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
303 Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
304 rdf:type schema:Organization
305 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
306 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea
307 Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
308 schema:name Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
309 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea
310 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
311 Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
312 rdf:type schema:Organization
313 grid-institutes:grid.411134.2 schema:alternateName Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
314 schema:name Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
315 rdf:type schema:Organization
316 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
317 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
318 rdf:type schema:Organization
319 grid-institutes:grid.413967.e schema:alternateName Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
320 schema:name Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
321 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...