Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05-21

AUTHORS

Yeon-koo Kang, Joon Young Choi, Jin Chul Paeng, Yong-il Kim, Hyun Woo Kwon, Gi Jeong Cheon, Kyung-Suk Suh, Choon Hyuck David Kwon, Dong Soo Lee, Keon Wook Kang

ABSTRACT

ObjectivesFluorodeoxyglucose (FDG) PET/CT is effective for predicting recurrence of hepatocellular carcinoma after liver transplantation. This study aimed to design composite criteria for predicting post-transplantation recurrence using clinical and FDG PET/CT factors.MethodsWe retrospectively enrolled 239 patients who underwent living donor transplantation in two independent centers between 2005 and 2013. On PET, maximum tumor-to-background ratio (TBRmax) was measured. Significant predictors for recurrence were selected by logistic regression and survival analyses. With varying cutoff values for the selected factors, composite criteria were designed to maximize the predictive performance for recurrence, and tenfold cross-validation was performed. Predictive values were compared between the composite criteria and the conventional recipient selection criteria.ResultsTumor size, number, alpha-fetoprotein, and TBRmax were selected as significant predictors in both logistic regression and multivariate survival analyses. In combination of these factors, the highest diagnostic performance was sensitivity of 75.7% and specificity of 88.5% with cutoff values of tumor size < 6.0 cm, tumor number < 8, alpha-fetoprotein < 465 ng/mL, and TBRmax < 2.8. The composite criteria exhibited the highest performance for predicting recurrence and recurrence-free survival among the tested criteria including conventional ones.ConclusionsThe composite criteria adding FDG PET findings to clinical factors are effective in selecting appropriate liver cancer patients who are candidates for liver transplantation.Key Points• In patients with HCC, tumor uptake on FDG PET/CT, tumor size, number, and serum AFP level are recognized individual predictors for tumor recurrence after LT.• A composite criterion set, combining tumor size, number, serum AFP level, and maximum tumor-to-background ratio (TBRmax), predicts post-LT recurrence most effectively when compared with conventional criteria sets in selecting candidates for living donor LT. More... »

PAGES

6009-6017

Journal

TITLE

European Radiology

ISSUE

11

VOLUME

29

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z

DOI

http://dx.doi.org/10.1007/s00330-019-06239-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1115024073

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/31115626


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1112", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Oncology and Carcinogenesis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biomarkers, Tumor", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Carcinoma, Hepatocellular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Female", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Fluorodeoxyglucose F18", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Neoplasms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Liver Transplantation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Living Donors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Male", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Middle Aged", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Neoplasm Recurrence, Local", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Patient Selection", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Positron Emission Tomography Computed Tomography", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Radiopharmaceuticals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Retrospective Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sensitivity and Specificity", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Survival Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Young Adult", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "alpha-Fetoproteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Yeon-koo", 
        "id": "sg:person.014562370740.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562370740.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Choi", 
        "givenName": "Joon Young", 
        "id": "sg:person.01315246161.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315246161.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.412484.f", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paeng", 
        "givenName": "Jin Chul", 
        "id": "sg:person.01343511335.32", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.413967.e", 
          "name": [
            "Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Yong-il", 
        "id": "sg:person.01001337521.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.411134.2", 
          "name": [
            "Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Hyun Woo", 
        "id": "sg:person.01217110670.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217110670.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheon", 
        "givenName": "Gi Jeong", 
        "id": "sg:person.01333472502.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suh", 
        "givenName": "Kyung-Suk", 
        "id": "sg:person.01166661455.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166661455.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.264381.a", 
          "name": [
            "Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kwon", 
        "givenName": "Choon Hyuck David", 
        "id": "sg:person.013334305237.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334305237.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Dong Soo", 
        "id": "sg:person.015617314175.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea", 
          "id": "http://www.grid.ac/institutes/grid.31501.36", 
          "name": [
            "Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea", 
            "Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kang", 
        "givenName": "Keon Wook", 
        "id": "sg:person.0761746266.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-018-5425-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104541905", 
          "https://doi.org/10.1007/s00330-018-5425-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01659064", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049278373", 
          "https://doi.org/10.1007/bf01659064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00259-016-3348-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040784473", 
          "https://doi.org/10.1007/s00259-016-3348-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-14430-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092353379", 
          "https://doi.org/10.1038/s41598-017-14430-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05-21", 
    "datePublishedReg": "2019-05-21", 
    "description": "ObjectivesFluorodeoxyglucose (FDG) PET/CT is effective for predicting recurrence of hepatocellular carcinoma after liver transplantation. This study aimed to design composite criteria for predicting post-transplantation recurrence using clinical and FDG PET/CT factors.MethodsWe retrospectively enrolled 239 patients who underwent living donor transplantation in two independent centers between 2005 and 2013. On PET, maximum tumor-to-background ratio (TBRmax) was measured. Significant predictors for recurrence were selected by logistic regression and survival analyses. With varying cutoff values for the selected factors, composite criteria were designed to maximize the predictive performance for recurrence, and tenfold cross-validation was performed. Predictive values were compared between the composite criteria and the conventional recipient selection criteria.ResultsTumor size, number, alpha-fetoprotein, and TBRmax were selected as significant predictors in both logistic regression and multivariate survival analyses. In combination of these factors, the highest diagnostic performance was sensitivity of 75.7% and specificity of 88.5% with cutoff values of tumor size <\u20096.0\u00a0cm, tumor number <\u20098, alpha-fetoprotein <\u2009465\u00a0ng/mL, and TBRmax <\u20092.8. The composite criteria exhibited the highest performance for predicting recurrence and recurrence-free survival among the tested criteria including conventional ones.ConclusionsThe composite criteria adding FDG PET findings to clinical factors are effective in selecting appropriate liver cancer patients who are candidates for liver transplantation.Key Points\u2022 In patients with HCC, tumor uptake on FDG PET/CT, tumor size, number, and serum AFP level are recognized individual predictors for tumor recurrence after LT.\u2022 A composite criterion set, combining tumor size, number, serum AFP level, and maximum tumor-to-background ratio (TBRmax), predicts post-LT recurrence most effectively when compared with conventional criteria sets in selecting candidates for living donor LT.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s00330-019-06239-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "keywords": [
      "serum AFP level", 
      "PET/CT", 
      "liver transplantation", 
      "tumor size", 
      "AFP levels", 
      "maximum tumor", 
      "hepatocellular carcinoma", 
      "cutoff value", 
      "alpha-fetoprotein", 
      "survival analysis", 
      "logistic regression", 
      "FDG PET/CT", 
      "composite criterion", 
      "CT factors", 
      "post-transplantation recurrence", 
      "donor liver transplantation", 
      "recurrence-free survival", 
      "FDG-PET findings", 
      "multivariate survival analysis", 
      "significant predictors", 
      "recipient selection criteria", 
      "liver cancer patients", 
      "criteria sets", 
      "high diagnostic performance", 
      "ResultsTumor size", 
      "LT recurrence", 
      "donor LT", 
      "donor transplantation", 
      "PET findings", 
      "clinical factors", 
      "tumor number", 
      "cancer patients", 
      "tumor recurrence", 
      "recurrence", 
      "tumor uptake", 
      "predictive value", 
      "transplantation", 
      "patients", 
      "diagnostic performance", 
      "carcinoma", 
      "TBRmax", 
      "tumors", 
      "independent centers", 
      "background ratio", 
      "predictors", 
      "CT", 
      "lt", 
      "individual predictors", 
      "selection criteria", 
      "factors", 
      "regression", 
      "criteria", 
      "MethodsWe", 
      "HCC", 
      "survival", 
      "levels", 
      "predictive performance", 
      "PET", 
      "specificity", 
      "findings", 
      "number", 
      "uptake", 
      "candidates", 
      "center", 
      "study", 
      "ratio", 
      "sensitivity", 
      "analysis", 
      "tenfold", 
      "values", 
      "combination", 
      "size", 
      "validation", 
      "one", 
      "performance", 
      "set", 
      "conventional one", 
      "high performance"
    ], 
    "name": "Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation", 
    "pagination": "6009-6017", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1115024073"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06239-z"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "31115626"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06239-z", 
      "https://app.dimensions.ai/details/publication/pub.1115024073"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_801.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s00330-019-06239-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06239-z'


 

This table displays all metadata directly associated to this object as RDF triples.

321 TRIPLES      21 PREDICATES      128 URIs      116 LITERALS      28 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06239-z schema:about N0573f52ebb454409aa6e78c6453d0222
2 N0e51d2c8be3142b1a2830a7cc78de1f5
3 N18be718271fd4985bc8c93440c7deabc
4 N225ac54e8e264baba92afbc874032bf6
5 N3939f373b9cf4f7c85177ee6a164b059
6 N3f1349d57a7e43288e396d078efecf6b
7 N4235f3d7283345988df031d6f7c5ab89
8 N5846406996b7407883129ed0457c3851
9 N68ffcacf1ae04427ba1ee59447e4a3d4
10 N6906013359134b20b04c18575b337f1d
11 N6bf5a26286f742de977e1df92359b8d4
12 N85cb7c5b5b8d46839696b76bcfdc9d11
13 N91687db5340643509cbb13b7adcdfdb9
14 N97e7a688a34f454a949b97b8f9b22af4
15 Na024f8943b3246d492b3096bb45ba0d6
16 Na5b3f33c026b41f983555e12d35269b6
17 Na65436e9d8c542c491e9fc8ea454ae9b
18 Nbed05ae4ff8741e18ca360518be72f84
19 Nd7284258f9444a1a9db0c3ea81606ea8
20 Ne173ae4895ce416dad2e27f39cc46316
21 Neb70f846d542499ab89d71bf373b977d
22 anzsrc-for:11
23 anzsrc-for:1112
24 schema:author Nf13b76f3d7c548158ef68af1cef01d85
25 schema:citation sg:pub.10.1007/bf01659064
26 sg:pub.10.1007/s00259-016-3348-y
27 sg:pub.10.1007/s00330-018-5425-z
28 sg:pub.10.1038/s41598-017-14430-9
29 schema:datePublished 2019-05-21
30 schema:datePublishedReg 2019-05-21
31 schema:description ObjectivesFluorodeoxyglucose (FDG) PET/CT is effective for predicting recurrence of hepatocellular carcinoma after liver transplantation. This study aimed to design composite criteria for predicting post-transplantation recurrence using clinical and FDG PET/CT factors.MethodsWe retrospectively enrolled 239 patients who underwent living donor transplantation in two independent centers between 2005 and 2013. On PET, maximum tumor-to-background ratio (TBRmax) was measured. Significant predictors for recurrence were selected by logistic regression and survival analyses. With varying cutoff values for the selected factors, composite criteria were designed to maximize the predictive performance for recurrence, and tenfold cross-validation was performed. Predictive values were compared between the composite criteria and the conventional recipient selection criteria.ResultsTumor size, number, alpha-fetoprotein, and TBRmax were selected as significant predictors in both logistic regression and multivariate survival analyses. In combination of these factors, the highest diagnostic performance was sensitivity of 75.7% and specificity of 88.5% with cutoff values of tumor size < 6.0 cm, tumor number < 8, alpha-fetoprotein < 465 ng/mL, and TBRmax < 2.8. The composite criteria exhibited the highest performance for predicting recurrence and recurrence-free survival among the tested criteria including conventional ones.ConclusionsThe composite criteria adding FDG PET findings to clinical factors are effective in selecting appropriate liver cancer patients who are candidates for liver transplantation.Key Points• In patients with HCC, tumor uptake on FDG PET/CT, tumor size, number, and serum AFP level are recognized individual predictors for tumor recurrence after LT.• A composite criterion set, combining tumor size, number, serum AFP level, and maximum tumor-to-background ratio (TBRmax), predicts post-LT recurrence most effectively when compared with conventional criteria sets in selecting candidates for living donor LT.
32 schema:genre article
33 schema:isAccessibleForFree false
34 schema:isPartOf N7d712a265ac541d5aac24435aab3a6d2
35 Nc48fdfa911274ed68ae7427547279260
36 sg:journal.1289120
37 schema:keywords AFP levels
38 CT
39 CT factors
40 FDG PET/CT
41 FDG-PET findings
42 HCC
43 LT recurrence
44 MethodsWe
45 PET
46 PET findings
47 PET/CT
48 ResultsTumor size
49 TBRmax
50 alpha-fetoprotein
51 analysis
52 background ratio
53 cancer patients
54 candidates
55 carcinoma
56 center
57 clinical factors
58 combination
59 composite criterion
60 conventional one
61 criteria
62 criteria sets
63 cutoff value
64 diagnostic performance
65 donor LT
66 donor liver transplantation
67 donor transplantation
68 factors
69 findings
70 hepatocellular carcinoma
71 high diagnostic performance
72 high performance
73 independent centers
74 individual predictors
75 levels
76 liver cancer patients
77 liver transplantation
78 logistic regression
79 lt
80 maximum tumor
81 multivariate survival analysis
82 number
83 one
84 patients
85 performance
86 post-transplantation recurrence
87 predictive performance
88 predictive value
89 predictors
90 ratio
91 recipient selection criteria
92 recurrence
93 recurrence-free survival
94 regression
95 selection criteria
96 sensitivity
97 serum AFP level
98 set
99 significant predictors
100 size
101 specificity
102 study
103 survival
104 survival analysis
105 tenfold
106 transplantation
107 tumor number
108 tumor recurrence
109 tumor size
110 tumor uptake
111 tumors
112 uptake
113 validation
114 values
115 schema:name Composite criteria using clinical and FDG PET/CT factors for predicting recurrence of hepatocellular carcinoma after living donor liver transplantation
116 schema:pagination 6009-6017
117 schema:productId N3785f9baef0d4f75b583aeea0117d4f5
118 N576442139f64413d9184421d1e586655
119 N76c85d1cdfe544a7b97c1db5cf4b8553
120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1115024073
121 https://doi.org/10.1007/s00330-019-06239-z
122 schema:sdDatePublished 2022-11-24T21:05
123 schema:sdLicense https://scigraph.springernature.com/explorer/license/
124 schema:sdPublisher N0ec506f43bac489e996e3aa70e816bff
125 schema:url https://doi.org/10.1007/s00330-019-06239-z
126 sgo:license sg:explorer/license/
127 sgo:sdDataset articles
128 rdf:type schema:ScholarlyArticle
129 N01716afe83e441c390d012c60a761fc7 rdf:first sg:person.01333472502.31
130 rdf:rest Nd0f5e807047e423b9a8e8882654be506
131 N0573f52ebb454409aa6e78c6453d0222 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Fluorodeoxyglucose F18
133 rdf:type schema:DefinedTerm
134 N0e51d2c8be3142b1a2830a7cc78de1f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Survival Analysis
136 rdf:type schema:DefinedTerm
137 N0ec506f43bac489e996e3aa70e816bff schema:name Springer Nature - SN SciGraph project
138 rdf:type schema:Organization
139 N18be718271fd4985bc8c93440c7deabc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
140 schema:name Retrospective Studies
141 rdf:type schema:DefinedTerm
142 N225ac54e8e264baba92afbc874032bf6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Living Donors
144 rdf:type schema:DefinedTerm
145 N2e5c26cea0034ff89e4e7f10bc1384ec rdf:first sg:person.01315246161.59
146 rdf:rest Ne90cb57ae6264941af7df6e64ee37d53
147 N3785f9baef0d4f75b583aeea0117d4f5 schema:name doi
148 schema:value 10.1007/s00330-019-06239-z
149 rdf:type schema:PropertyValue
150 N3939f373b9cf4f7c85177ee6a164b059 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
151 schema:name Adult
152 rdf:type schema:DefinedTerm
153 N3f1349d57a7e43288e396d078efecf6b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Patient Selection
155 rdf:type schema:DefinedTerm
156 N4235f3d7283345988df031d6f7c5ab89 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name Radiopharmaceuticals
158 rdf:type schema:DefinedTerm
159 N4438b02414484411b129c9e718b0aed5 rdf:first sg:person.013334305237.03
160 rdf:rest N4ada9c8673ea4007a9aef50dee1f73ff
161 N4ada9c8673ea4007a9aef50dee1f73ff rdf:first sg:person.015617314175.88
162 rdf:rest N64e012075a42435ca866fe6e9c20797b
163 N576442139f64413d9184421d1e586655 schema:name pubmed_id
164 schema:value 31115626
165 rdf:type schema:PropertyValue
166 N5846406996b7407883129ed0457c3851 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Sensitivity and Specificity
168 rdf:type schema:DefinedTerm
169 N64e012075a42435ca866fe6e9c20797b rdf:first sg:person.0761746266.86
170 rdf:rest rdf:nil
171 N68ffcacf1ae04427ba1ee59447e4a3d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
172 schema:name Middle Aged
173 rdf:type schema:DefinedTerm
174 N6906013359134b20b04c18575b337f1d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
175 schema:name Biomarkers, Tumor
176 rdf:type schema:DefinedTerm
177 N6bf5a26286f742de977e1df92359b8d4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
178 schema:name Positron Emission Tomography Computed Tomography
179 rdf:type schema:DefinedTerm
180 N76c85d1cdfe544a7b97c1db5cf4b8553 schema:name dimensions_id
181 schema:value pub.1115024073
182 rdf:type schema:PropertyValue
183 N7d712a265ac541d5aac24435aab3a6d2 schema:issueNumber 11
184 rdf:type schema:PublicationIssue
185 N85cb7c5b5b8d46839696b76bcfdc9d11 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
186 schema:name Aged
187 rdf:type schema:DefinedTerm
188 N91687db5340643509cbb13b7adcdfdb9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
189 schema:name Carcinoma, Hepatocellular
190 rdf:type schema:DefinedTerm
191 N95d9b2997d2c4b398af22c575cdb07eb rdf:first sg:person.01001337521.67
192 rdf:rest Nae5f79febef64b49adaee4fbf1f3be73
193 N97e7a688a34f454a949b97b8f9b22af4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
194 schema:name Humans
195 rdf:type schema:DefinedTerm
196 Na024f8943b3246d492b3096bb45ba0d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
197 schema:name alpha-Fetoproteins
198 rdf:type schema:DefinedTerm
199 Na5b3f33c026b41f983555e12d35269b6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
200 schema:name Young Adult
201 rdf:type schema:DefinedTerm
202 Na65436e9d8c542c491e9fc8ea454ae9b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
203 schema:name Liver Transplantation
204 rdf:type schema:DefinedTerm
205 Nae5f79febef64b49adaee4fbf1f3be73 rdf:first sg:person.01217110670.08
206 rdf:rest N01716afe83e441c390d012c60a761fc7
207 Nbed05ae4ff8741e18ca360518be72f84 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
208 schema:name Male
209 rdf:type schema:DefinedTerm
210 Nc48fdfa911274ed68ae7427547279260 schema:volumeNumber 29
211 rdf:type schema:PublicationVolume
212 Nd0f5e807047e423b9a8e8882654be506 rdf:first sg:person.01166661455.74
213 rdf:rest N4438b02414484411b129c9e718b0aed5
214 Nd7284258f9444a1a9db0c3ea81606ea8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
215 schema:name Female
216 rdf:type schema:DefinedTerm
217 Ne173ae4895ce416dad2e27f39cc46316 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
218 schema:name Liver Neoplasms
219 rdf:type schema:DefinedTerm
220 Ne90cb57ae6264941af7df6e64ee37d53 rdf:first sg:person.01343511335.32
221 rdf:rest N95d9b2997d2c4b398af22c575cdb07eb
222 Neb70f846d542499ab89d71bf373b977d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
223 schema:name Neoplasm Recurrence, Local
224 rdf:type schema:DefinedTerm
225 Nf13b76f3d7c548158ef68af1cef01d85 rdf:first sg:person.014562370740.06
226 rdf:rest N2e5c26cea0034ff89e4e7f10bc1384ec
227 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
228 schema:name Medical and Health Sciences
229 rdf:type schema:DefinedTerm
230 anzsrc-for:1112 schema:inDefinedTermSet anzsrc-for:
231 schema:name Oncology and Carcinogenesis
232 rdf:type schema:DefinedTerm
233 sg:journal.1289120 schema:issn 0938-7994
234 1432-1084
235 schema:name European Radiology
236 schema:publisher Springer Nature
237 rdf:type schema:Periodical
238 sg:person.01001337521.67 schema:affiliation grid-institutes:grid.413967.e
239 schema:familyName Kim
240 schema:givenName Yong-il
241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01001337521.67
242 rdf:type schema:Person
243 sg:person.01166661455.74 schema:affiliation grid-institutes:grid.31501.36
244 schema:familyName Suh
245 schema:givenName Kyung-Suk
246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166661455.74
247 rdf:type schema:Person
248 sg:person.01217110670.08 schema:affiliation grid-institutes:grid.411134.2
249 schema:familyName Kwon
250 schema:givenName Hyun Woo
251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01217110670.08
252 rdf:type schema:Person
253 sg:person.01315246161.59 schema:affiliation grid-institutes:grid.264381.a
254 schema:familyName Choi
255 schema:givenName Joon Young
256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315246161.59
257 rdf:type schema:Person
258 sg:person.013334305237.03 schema:affiliation grid-institutes:grid.264381.a
259 schema:familyName Kwon
260 schema:givenName Choon Hyuck David
261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013334305237.03
262 rdf:type schema:Person
263 sg:person.01333472502.31 schema:affiliation grid-institutes:grid.31501.36
264 schema:familyName Cheon
265 schema:givenName Gi Jeong
266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333472502.31
267 rdf:type schema:Person
268 sg:person.01343511335.32 schema:affiliation grid-institutes:grid.412484.f
269 schema:familyName Paeng
270 schema:givenName Jin Chul
271 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01343511335.32
272 rdf:type schema:Person
273 sg:person.014562370740.06 schema:affiliation grid-institutes:grid.31501.36
274 schema:familyName Kang
275 schema:givenName Yeon-koo
276 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014562370740.06
277 rdf:type schema:Person
278 sg:person.015617314175.88 schema:affiliation grid-institutes:grid.31501.36
279 schema:familyName Lee
280 schema:givenName Dong Soo
281 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015617314175.88
282 rdf:type schema:Person
283 sg:person.0761746266.86 schema:affiliation grid-institutes:grid.31501.36
284 schema:familyName Kang
285 schema:givenName Keon Wook
286 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0761746266.86
287 rdf:type schema:Person
288 sg:pub.10.1007/bf01659064 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049278373
289 https://doi.org/10.1007/bf01659064
290 rdf:type schema:CreativeWork
291 sg:pub.10.1007/s00259-016-3348-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1040784473
292 https://doi.org/10.1007/s00259-016-3348-y
293 rdf:type schema:CreativeWork
294 sg:pub.10.1007/s00330-018-5425-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1104541905
295 https://doi.org/10.1007/s00330-018-5425-z
296 rdf:type schema:CreativeWork
297 sg:pub.10.1038/s41598-017-14430-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092353379
298 https://doi.org/10.1038/s41598-017-14430-9
299 rdf:type schema:CreativeWork
300 grid-institutes:grid.264381.a schema:alternateName Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
301 Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
302 schema:name Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
303 Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
304 rdf:type schema:Organization
305 grid-institutes:grid.31501.36 schema:alternateName Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
306 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea
307 Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
308 schema:name Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
309 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate school of Convergence Science and Technology, Seoul National University, Seoul, South Korea
310 Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
311 Department of Surgery, Seoul National University College of Medicine, Seoul, South Korea
312 rdf:type schema:Organization
313 grid-institutes:grid.411134.2 schema:alternateName Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
314 schema:name Department of Nuclear Medicine, Korea University Anam Hospital, Seoul, South Korea
315 rdf:type schema:Organization
316 grid-institutes:grid.412484.f schema:alternateName Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
317 schema:name Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, 03080, Seoul, South Korea
318 rdf:type schema:Organization
319 grid-institutes:grid.413967.e schema:alternateName Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
320 schema:name Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
321 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...