Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-19

AUTHORS

Lucian Beer, Michael Toepker, Ahmed Ba-Ssalamah, Christian Schestak, Anja Dutschke, Martin Schindl, Alexander Wressnegger, Helmut Ringl, Paul Apfaltrer

ABSTRACT

OBJECTIVES: The aim of this study was to assess the objective and subjective image characteristics of monoenergetic images (MEI[+]), using a noise-optimized algorithm at different kiloelectron volts (keV) compared to polyenergetic images (PEI), in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: This retrospective, institutional review board-approved study included 45 patients (18 male, 27 female; mean age 66 years; range, 42-96 years) with PDAC who had undergone a dual-energy CT (DECT) of the abdomen for staging. One standard polyenergetic image (PEI) and five MEI(+) images in 10-keV intervals, ranging from 40 to 80 keV, were reconstructed. Line-density profile analysis, as well as the contrast-to-noise ratio (CNR) of the tumor, the signal-to-noise ratio (SNR) of the regular pancreas parenchyma and the tumor, and the CNR of the three main peripancreatic vessels, was calculated. For subjective quality assessment, two readers independently assessed the images using a 5-point Likert scale. Reader reliability was evaluated using an intraclass correlation coefficient. RESULTS: Line-density profile analysis revealed the largest gradient in attenuation between PDAC and regular tissue in MEI(+) at 40 keV. Low-keV MEI(+)reconstructions at 40 and 50 keV increased CNR and SNR compared to PEI (40 keV: CNR 46.8 vs. 7.5; SNRPankreas 32.5 vs. 15.7; SNRLesion 13.5 vs. 8.6; p < 0.001). MEI(+) at 40 keV and 50 keV were consistently preferred by the observers (p < 0.05), showing a high intra-observer 0.937 (0.92-0.95) and inter-observer 0.911 (0.89-0.93) agreement. CONCLUSION: MEI(+) reconstructions at 40 keV and 50 keV provide better objective and subjective image quality compared to conventional PEI of DECT in patients with PDAC. KEY POINTS: • Low-keV MEI(+) reconstructions at 40 and 50 keV increase tumor-to-pancreas contrast compared to PEI. • Low-keV MEI(+) reconstructions improve objective and subjective image quality parameters compared to PEI. • Dual-energy post-processing might be a valuable tool in the diagnostic workup of patients with PDAC. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9

DOI

http://dx.doi.org/10.1007/s00330-019-06116-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112860946

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30888484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Clinical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beer", 
        "givenName": "Lucian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toepker", 
        "givenName": "Michael", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ba-Ssalamah", 
        "givenName": "Ahmed", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schestak", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutschke", 
        "givenName": "Anja", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Surgery, Medical University of Vienna, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schindl", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wressnegger", 
        "givenName": "Alexander", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Medical University of Vienna", 
          "id": "https://www.grid.ac/institutes/grid.22937.3d", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ringl", 
        "givenName": "Helmut", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Medical Centre Mannheim", 
          "id": "https://www.grid.ac/institutes/grid.411778.c", 
          "name": [
            "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
            "Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Apfaltrer", 
        "givenName": "Paul", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00330-016-4708-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002739230", 
          "https://doi.org/10.1007/s00330-016-4708-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4708-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002739230", 
          "https://doi.org/10.1007/s00330-016-4708-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2013.04.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003796211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.11101189", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006236867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2015.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010225054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijrobp.2010.04.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013279770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3970-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026304837", 
          "https://doi.org/10.1007/s00330-015-3970-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-014-0274-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029968972", 
          "https://doi.org/10.1007/s00261-014-0274-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-3997-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034203331", 
          "https://doi.org/10.1007/s00330-015-3997-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040562783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0000000000000492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040562783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049691233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049691233"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.oraloncology.2013.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049714670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31818c3d4b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0b013e31818c3d4b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051071380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015151560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079219457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1151-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084906944", 
          "https://doi.org/10.1007/s00261-017-1151-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1151-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084906944", 
          "https://doi.org/10.1007/s00261-017-1151-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2017.08.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091409133"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1259/bjr.20170411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091932051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1390-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092689580", 
          "https://doi.org/10.1007/s00261-017-1390-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-017-1390-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092689580", 
          "https://doi.org/10.1007/s00261-017-1390-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-017-5258-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100481784", 
          "https://doi.org/10.1007/s00330-017-5258-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5313-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101110900", 
          "https://doi.org/10.1007/s00330-018-5313-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5313-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101110900", 
          "https://doi.org/10.1007/s00330-018-5313-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5338-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101110902", 
          "https://doi.org/10.1007/s00330-018-5338-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5338-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101110902", 
          "https://doi.org/10.1007/s00330-018-5338-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5407-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103247651", 
          "https://doi.org/10.1007/s00330-018-5407-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5762-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107711873", 
          "https://doi.org/10.1007/s00330-018-5762-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-018-5789-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107923978", 
          "https://doi.org/10.1007/s00330-018-5789-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-018-1808-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109808999", 
          "https://doi.org/10.1007/s00261-018-1808-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-018-1808-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109808999", 
          "https://doi.org/10.1007/s00261-018-1808-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-018-1808-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109808999", 
          "https://doi.org/10.1007/s00261-018-1808-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00261-018-1808-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109808999", 
          "https://doi.org/10.1007/s00261-018-1808-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-19", 
    "datePublishedReg": "2019-03-19", 
    "description": "OBJECTIVES: The aim of this study was to assess the objective and subjective image characteristics of monoenergetic images (MEI[+]), using a noise-optimized algorithm at different kiloelectron volts (keV) compared to polyenergetic images (PEI), in patients with pancreatic ductal adenocarcinoma (PDAC).\nMETHODS: This retrospective, institutional review board-approved study included 45 patients (18 male, 27 female; mean age 66\u00a0years; range, 42-96\u00a0years) with PDAC who had undergone a dual-energy CT (DECT) of the abdomen for staging. One standard polyenergetic image (PEI) and five MEI(+) images in 10-keV intervals, ranging from 40 to 80\u00a0keV, were reconstructed. Line-density profile analysis, as well as the contrast-to-noise ratio (CNR) of the tumor, the signal-to-noise ratio (SNR) of the regular pancreas parenchyma and the tumor, and the CNR of the three main peripancreatic vessels, was calculated. For subjective quality assessment, two readers independently assessed the images using a 5-point Likert scale. Reader reliability was evaluated using an intraclass correlation coefficient.\nRESULTS: Line-density profile analysis revealed the largest gradient in attenuation between PDAC and regular tissue in MEI(+) at 40\u00a0keV. Low-keV MEI(+)reconstructions at 40 and 50\u00a0keV increased CNR and SNR compared to PEI (40\u00a0keV: CNR 46.8 vs. 7.5; SNRPankreas 32.5 vs. 15.7; SNRLesion 13.5 vs. 8.6; p\u2009<\u20090.001). MEI(+) at 40\u00a0keV and 50\u00a0keV were consistently preferred by the observers (p\u2009<\u20090.05), showing a high intra-observer 0.937 (0.92-0.95) and inter-observer 0.911 (0.89-0.93) agreement.\nCONCLUSION: MEI(+) reconstructions at 40\u00a0keV and 50\u00a0keV provide better objective and subjective image quality compared to conventional PEI of DECT in patients with PDAC.\nKEY POINTS: \u2022 Low-keV MEI(+) reconstructions at 40 and 50\u00a0keV increase tumor-to-pancreas contrast compared to PEI. \u2022 Low-keV MEI(+) reconstructions improve objective and subjective image quality parameters compared to PEI. \u2022 Dual-energy post-processing might be a valuable tool in the diagnostic workup of patients with PDAC.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-019-06116-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "172bab3adf0d6d526379415fa118b9a7f5ae9a85978f8377dadab09ef8b7e740"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30888484"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06116-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112860946"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06116-9", 
      "https://app.dimensions.ai/details/publication/pub.1112860946"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:24", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87097_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-019-06116-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      50 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06116-9 schema:about anzsrc-for:11
2 anzsrc-for:1103
3 schema:author Nee046e270dd0479a883bd51d241e6de1
4 schema:citation sg:pub.10.1007/s00261-014-0274-y
5 sg:pub.10.1007/s00261-017-1151-2
6 sg:pub.10.1007/s00261-017-1390-2
7 sg:pub.10.1007/s00261-018-1808-5
8 sg:pub.10.1007/s00330-015-3970-2
9 sg:pub.10.1007/s00330-015-3997-4
10 sg:pub.10.1007/s00330-016-4708-5
11 sg:pub.10.1007/s00330-017-5258-1
12 sg:pub.10.1007/s00330-018-5313-6
13 sg:pub.10.1007/s00330-018-5338-x
14 sg:pub.10.1007/s00330-018-5407-1
15 sg:pub.10.1007/s00330-018-5762-y
16 sg:pub.10.1007/s00330-018-5789-0
17 https://doi.org/10.1016/j.ejrad.2013.04.040
18 https://doi.org/10.1016/j.ejrad.2015.07.020
19 https://doi.org/10.1016/j.ejrad.2017.08.035
20 https://doi.org/10.1016/j.ijrobp.2010.04.058
21 https://doi.org/10.1016/j.oraloncology.2013.12.001
22 https://doi.org/10.1097/rct.0000000000000492
23 https://doi.org/10.1097/rli.0000000000000060
24 https://doi.org/10.1097/rli.0b013e31818c3d4b
25 https://doi.org/10.1148/radiol.11101189
26 https://doi.org/10.1148/radiol.2015151560
27 https://doi.org/10.1259/bjr.20170411
28 schema:datePublished 2019-03-19
29 schema:datePublishedReg 2019-03-19
30 schema:description OBJECTIVES: The aim of this study was to assess the objective and subjective image characteristics of monoenergetic images (MEI[+]), using a noise-optimized algorithm at different kiloelectron volts (keV) compared to polyenergetic images (PEI), in patients with pancreatic ductal adenocarcinoma (PDAC). METHODS: This retrospective, institutional review board-approved study included 45 patients (18 male, 27 female; mean age 66 years; range, 42-96 years) with PDAC who had undergone a dual-energy CT (DECT) of the abdomen for staging. One standard polyenergetic image (PEI) and five MEI(+) images in 10-keV intervals, ranging from 40 to 80 keV, were reconstructed. Line-density profile analysis, as well as the contrast-to-noise ratio (CNR) of the tumor, the signal-to-noise ratio (SNR) of the regular pancreas parenchyma and the tumor, and the CNR of the three main peripancreatic vessels, was calculated. For subjective quality assessment, two readers independently assessed the images using a 5-point Likert scale. Reader reliability was evaluated using an intraclass correlation coefficient. RESULTS: Line-density profile analysis revealed the largest gradient in attenuation between PDAC and regular tissue in MEI(+) at 40 keV. Low-keV MEI(+)reconstructions at 40 and 50 keV increased CNR and SNR compared to PEI (40 keV: CNR 46.8 vs. 7.5; SNRPankreas 32.5 vs. 15.7; SNRLesion 13.5 vs. 8.6; p < 0.001). MEI(+) at 40 keV and 50 keV were consistently preferred by the observers (p < 0.05), showing a high intra-observer 0.937 (0.92-0.95) and inter-observer 0.911 (0.89-0.93) agreement. CONCLUSION: MEI(+) reconstructions at 40 keV and 50 keV provide better objective and subjective image quality compared to conventional PEI of DECT in patients with PDAC. KEY POINTS: • Low-keV MEI(+) reconstructions at 40 and 50 keV increase tumor-to-pancreas contrast compared to PEI. • Low-keV MEI(+) reconstructions improve objective and subjective image quality parameters compared to PEI. • Dual-energy post-processing might be a valuable tool in the diagnostic workup of patients with PDAC.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf sg:journal.1289120
35 schema:name Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma
36 schema:pagination 1-9
37 schema:productId N2b378e4ca43e4883b40f661b5b4a9cbf
38 N32b5e5af29644244bbfa2e1275ad8c85
39 N4947e8a990c648759429794a239ede3e
40 N5729c807931d4b4fb07a4cc1aae3ffc4
41 N9e4b350d04d044e19235046bcffcef8b
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112860946
43 https://doi.org/10.1007/s00330-019-06116-9
44 schema:sdDatePublished 2019-04-11T12:24
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nbd8b09d6813e4d1a86c1e9d92532dfff
47 schema:url https://link.springer.com/10.1007%2Fs00330-019-06116-9
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N268b1351231049b19e67ce0821bf4acf rdf:first N6cc648331f6e4d40abaf78a766a5a1d3
52 rdf:rest N8a15ded6e9de45a49cec3ed60f5bd58f
53 N27c6567560574e3184f0c6fdcba88ff7 rdf:first Ncc57c3945f8e411194d7c645b6521cf7
54 rdf:rest rdf:nil
55 N2b378e4ca43e4883b40f661b5b4a9cbf schema:name readcube_id
56 schema:value 172bab3adf0d6d526379415fa118b9a7f5ae9a85978f8377dadab09ef8b7e740
57 rdf:type schema:PropertyValue
58 N32b5e5af29644244bbfa2e1275ad8c85 schema:name nlm_unique_id
59 schema:value 9114774
60 rdf:type schema:PropertyValue
61 N36ea142294254efd90bb259ffb6881e0 rdf:first N8b7e82d08fb145cd9943bdfb78bb275d
62 rdf:rest Nc22e74200222480babef49ecd8666c4a
63 N4947e8a990c648759429794a239ede3e schema:name doi
64 schema:value 10.1007/s00330-019-06116-9
65 rdf:type schema:PropertyValue
66 N4ad7e1f2234a4a44b979a8aeb0be9757 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
67 schema:familyName Ringl
68 schema:givenName Helmut
69 rdf:type schema:Person
70 N4e1e02bb2024467599ac56b741044a2e rdf:first N97c7ad6896ba43d785ff6144e3bf6aa8
71 rdf:rest Nf5cfe810d06e4208834ff962a0cb1dc1
72 N5729c807931d4b4fb07a4cc1aae3ffc4 schema:name dimensions_id
73 schema:value pub.1112860946
74 rdf:type schema:PropertyValue
75 N6171d9b6fcbb44c3a5f29d4b3efd6207 rdf:first Nb4ffdea5956a4c0e954cee88c79e7b03
76 rdf:rest N36ea142294254efd90bb259ffb6881e0
77 N6cc648331f6e4d40abaf78a766a5a1d3 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
78 schema:familyName Dutschke
79 schema:givenName Anja
80 rdf:type schema:Person
81 N6eff44e4f60a4ba5b75505e65dadb2bd schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
82 schema:familyName Schestak
83 schema:givenName Christian
84 rdf:type schema:Person
85 N8a15ded6e9de45a49cec3ed60f5bd58f rdf:first Na3e0c539be79408ab2f733d89dabdef4
86 rdf:rest N4e1e02bb2024467599ac56b741044a2e
87 N8b7e82d08fb145cd9943bdfb78bb275d schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
88 schema:familyName Ba-Ssalamah
89 schema:givenName Ahmed
90 rdf:type schema:Person
91 N97c7ad6896ba43d785ff6144e3bf6aa8 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
92 schema:familyName Wressnegger
93 schema:givenName Alexander
94 rdf:type schema:Person
95 N9e4b350d04d044e19235046bcffcef8b schema:name pubmed_id
96 schema:value 30888484
97 rdf:type schema:PropertyValue
98 Na3e0c539be79408ab2f733d89dabdef4 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
99 schema:familyName Schindl
100 schema:givenName Martin
101 rdf:type schema:Person
102 Nb4ffdea5956a4c0e954cee88c79e7b03 schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
103 schema:familyName Toepker
104 schema:givenName Michael
105 rdf:type schema:Person
106 Nbd8b09d6813e4d1a86c1e9d92532dfff schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nc22e74200222480babef49ecd8666c4a rdf:first N6eff44e4f60a4ba5b75505e65dadb2bd
109 rdf:rest N268b1351231049b19e67ce0821bf4acf
110 Ncc57c3945f8e411194d7c645b6521cf7 schema:affiliation https://www.grid.ac/institutes/grid.411778.c
111 schema:familyName Apfaltrer
112 schema:givenName Paul
113 rdf:type schema:Person
114 Nd5df34b0db26407fa456a8874ac0125d schema:affiliation https://www.grid.ac/institutes/grid.22937.3d
115 schema:familyName Beer
116 schema:givenName Lucian
117 rdf:type schema:Person
118 Nee046e270dd0479a883bd51d241e6de1 rdf:first Nd5df34b0db26407fa456a8874ac0125d
119 rdf:rest N6171d9b6fcbb44c3a5f29d4b3efd6207
120 Nf5cfe810d06e4208834ff962a0cb1dc1 rdf:first N4ad7e1f2234a4a44b979a8aeb0be9757
121 rdf:rest N27c6567560574e3184f0c6fdcba88ff7
122 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
123 schema:name Medical and Health Sciences
124 rdf:type schema:DefinedTerm
125 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
126 schema:name Clinical Sciences
127 rdf:type schema:DefinedTerm
128 sg:journal.1289120 schema:issn 0938-7994
129 1432-1084
130 schema:name European Radiology
131 rdf:type schema:Periodical
132 sg:pub.10.1007/s00261-014-0274-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029968972
133 https://doi.org/10.1007/s00261-014-0274-y
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00261-017-1151-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084906944
136 https://doi.org/10.1007/s00261-017-1151-2
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00261-017-1390-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092689580
139 https://doi.org/10.1007/s00261-017-1390-2
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00261-018-1808-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109808999
142 https://doi.org/10.1007/s00261-018-1808-5
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/s00330-015-3970-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026304837
145 https://doi.org/10.1007/s00330-015-3970-2
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/s00330-015-3997-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034203331
148 https://doi.org/10.1007/s00330-015-3997-4
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00330-016-4708-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002739230
151 https://doi.org/10.1007/s00330-016-4708-5
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00330-017-5258-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100481784
154 https://doi.org/10.1007/s00330-017-5258-1
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s00330-018-5313-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101110900
157 https://doi.org/10.1007/s00330-018-5313-6
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00330-018-5338-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101110902
160 https://doi.org/10.1007/s00330-018-5338-x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s00330-018-5407-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103247651
163 https://doi.org/10.1007/s00330-018-5407-1
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/s00330-018-5762-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107711873
166 https://doi.org/10.1007/s00330-018-5762-y
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00330-018-5789-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107923978
169 https://doi.org/10.1007/s00330-018-5789-0
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1016/j.ejrad.2013.04.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003796211
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1016/j.ejrad.2015.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010225054
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1016/j.ejrad.2017.08.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091409133
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1016/j.ijrobp.2010.04.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013279770
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1016/j.oraloncology.2013.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049714670
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1097/rct.0000000000000492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040562783
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1097/rli.0000000000000060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049691233
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1097/rli.0b013e31818c3d4b schema:sameAs https://app.dimensions.ai/details/publication/pub.1051071380
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1148/radiol.11101189 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006236867
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1148/radiol.2015151560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079219457
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1259/bjr.20170411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091932051
192 rdf:type schema:CreativeWork
193 https://www.grid.ac/institutes/grid.22937.3d schema:alternateName Medical University of Vienna
194 schema:name Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
195 Department of Surgery, Medical University of Vienna, Vienna, Austria
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.411778.c schema:alternateName University Medical Centre Mannheim
198 schema:name Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
199 Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...