Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2019-03-19

AUTHORS

Lucian Beer, Michael Toepker, Ahmed Ba-Ssalamah, Christian Schestak, Anja Dutschke, Martin Schindl, Alexander Wressnegger, Helmut Ringl, Paul Apfaltrer

ABSTRACT

ObjectivesThe aim of this study was to assess the objective and subjective image characteristics of monoenergetic images (MEI[+]), using a noise-optimized algorithm at different kiloelectron volts (keV) compared to polyenergetic images (PEI), in patients with pancreatic ductal adenocarcinoma (PDAC).MethodsThis retrospective, institutional review board-approved study included 45 patients (18 male, 27 female; mean age 66 years; range, 42–96 years) with PDAC who had undergone a dual-energy CT (DECT) of the abdomen for staging. One standard polyenergetic image (PEI) and five MEI(+) images in 10-keV intervals, ranging from 40 to 80 keV, were reconstructed. Line-density profile analysis, as well as the contrast-to-noise ratio (CNR) of the tumor, the signal-to-noise ratio (SNR) of the regular pancreas parenchyma and the tumor, and the CNR of the three main peripancreatic vessels, was calculated. For subjective quality assessment, two readers independently assessed the images using a 5-point Likert scale. Reader reliability was evaluated using an intraclass correlation coefficient.ResultsLine-density profile analysis revealed the largest gradient in attenuation between PDAC and regular tissue in MEI(+) at 40 keV. Low-keV MEI(+)reconstructions at 40 and 50 keV increased CNR and SNR compared to PEI (40 keV: CNR 46.8 vs. 7.5; SNRPankreas 32.5 vs. 15.7; SNRLesion 13.5 vs. 8.6; p < 0.001). MEI(+) at 40 keV and 50 keV were consistently preferred by the observers (p < 0.05), showing a high intra-observer 0.937 (0.92–0.95) and inter-observer 0.911 (0.89–0.93) agreement.ConclusionMEI(+) reconstructions at 40 keV and 50 keV provide better objective and subjective image quality compared to conventional PEI of DECT in patients with PDAC.Key Points• Low-keV MEI(+) reconstructions at 40 and 50 keV increase tumor-to-pancreas contrast compared to PEI.• Low-keV MEI(+) reconstructions improve objective and subjective image quality parameters compared to PEI.• Dual-energy post-processing might be a valuable tool in the diagnostic workup of patients with PDAC. More... »

PAGES

3617-3625

References to SciGraph publications

  • 2018-02-19. A noise-optimized virtual monoenergetic reconstruction algorithm improves the diagnostic accuracy of late hepatic arterial phase dual-energy CT for the detection of hypervascular liver lesions in EUROPEAN RADIOLOGY
  • 2017-11-14. Role of rapid kV-switching dual-energy CT in assessment of post-surgical local recurrence of pancreatic adenocarcinoma in ABDOMINAL RADIOLOGY
  • 2017-04-18. Assessment of 70-keV virtual monoenergetic spectral images in abdominal CT imaging: A comparison study to conventional polychromatic 120-kVp images in ABDOMINAL RADIOLOGY
  • 2014-10-21. Multireader evaluation of lesion conspicuity in small pancreatic adenocarcinomas: complimentary value of iodine material density and low keV simulated monoenergetic images using multiphasic rapid kVp-switching dual energy CT in ABDOMINAL RADIOLOGY
  • 2015-09-03. Advanced image-based virtual monoenergetic dual-energy CT angiography of the abdomen: optimization of kiloelectron volt settings to improve image contrast in EUROPEAN RADIOLOGY
  • 2018-10-18. Comparison of dual- and single-source dual-energy CT in head and neck imaging in EUROPEAN RADIOLOGY
  • 2018-11-10. Rapid kVp switching dual-energy CT in the assessment of urolithiasis in patients with large body habitus: preliminary observations on image quality and stone characterization in ABDOMINAL RADIOLOGY
  • 2017-01-16. Contrast-enhanced CT in determining resectability in patients with pancreatic carcinoma: a meta-analysis of the positive predictive values of CT in EUROPEAN RADIOLOGY
  • 2018-02-19. Comparison of image quality and radiation dose between split-filter dual-energy images and single-energy images in single-source abdominal CT in EUROPEAN RADIOLOGY
  • 2018-01-19. Magnetic resonance with diffusion-weighted imaging improves assessment of focal liver lesions in patients with potentially resectable pancreatic cancer on CT in EUROPEAN RADIOLOGY
  • 2015-09-15. Impact of an advanced image-based monoenergetic reconstruction algorithm on coronary stent visualization using third generation dual-source dual-energy CT: a phantom study in EUROPEAN RADIOLOGY
  • 2018-04-13. Assessment of an advanced virtual monoenergetic reconstruction technique in cerebral and cervical angiography with third-generation dual-source CT: Feasibility of using low-concentration contrast medium in EUROPEAN RADIOLOGY
  • 2018-10-30. Dual-layer dual-energy computed tomography for the assessment of hypovascular hepatic metastases: impact of closing k-edge on image quality and lesion detectability in EUROPEAN RADIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9

    DOI

    http://dx.doi.org/10.1007/s00330-019-06116-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112860946

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30888484


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1103", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Clinical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adult", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Aged, 80 and over", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Carcinoma, Pancreatic Ductal", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Female", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Image Processing, Computer-Assisted", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Male", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Middle Aged", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pancreas", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Pancreatic Neoplasms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Radiography, Dual-Energy Scanned Projection", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reproducibility of Results", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Retrospective Studies", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Virtual Reality", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Beer", 
            "givenName": "Lucian", 
            "id": "sg:person.01261164020.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261164020.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Toepker", 
            "givenName": "Michael", 
            "id": "sg:person.01075601514.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075601514.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ba-Ssalamah", 
            "givenName": "Ahmed", 
            "id": "sg:person.0610263641.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610263641.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schestak", 
            "givenName": "Christian", 
            "id": "sg:person.015064311225.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064311225.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dutschke", 
            "givenName": "Anja", 
            "id": "sg:person.0675016037.33", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675016037.33"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Surgery, Medical University of Vienna, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Surgery, Medical University of Vienna, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schindl", 
            "givenName": "Martin", 
            "id": "sg:person.0603017413.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603017413.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wressnegger", 
            "givenName": "Alexander", 
            "id": "sg:person.0616320524.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616320524.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
              "id": "http://www.grid.ac/institutes/grid.22937.3d", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ringl", 
            "givenName": "Helmut", 
            "id": "sg:person.01325507765.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325507765.65"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany", 
              "id": "http://www.grid.ac/institutes/grid.411778.c", 
              "name": [
                "Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria", 
                "Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Apfaltrer", 
            "givenName": "Paul", 
            "id": "sg:person.01312256453.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312256453.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00261-017-1151-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084906944", 
              "https://doi.org/10.1007/s00261-017-1151-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5407-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103247651", 
              "https://doi.org/10.1007/s00330-018-5407-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-014-0274-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029968972", 
              "https://doi.org/10.1007/s00261-014-0274-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3997-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034203331", 
              "https://doi.org/10.1007/s00330-015-3997-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5338-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101110902", 
              "https://doi.org/10.1007/s00330-018-5338-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-5258-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100481784", 
              "https://doi.org/10.1007/s00330-017-5258-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-018-1808-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1109808999", 
              "https://doi.org/10.1007/s00261-018-1808-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5789-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107923978", 
              "https://doi.org/10.1007/s00330-018-5789-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-016-4708-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002739230", 
              "https://doi.org/10.1007/s00330-016-4708-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-015-3970-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026304837", 
              "https://doi.org/10.1007/s00330-015-3970-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5762-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107711873", 
              "https://doi.org/10.1007/s00330-018-5762-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00261-017-1390-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092689580", 
              "https://doi.org/10.1007/s00261-017-1390-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5313-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101110900", 
              "https://doi.org/10.1007/s00330-018-5313-6"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-19", 
        "datePublishedReg": "2019-03-19", 
        "description": "ObjectivesThe aim of this study was to assess the objective and subjective image characteristics of monoenergetic images (MEI[+]), using a noise-optimized algorithm at different kiloelectron volts (keV) compared to polyenergetic images (PEI), in patients with pancreatic ductal adenocarcinoma (PDAC).MethodsThis retrospective, institutional review board-approved study included 45 patients (18 male, 27 female; mean age 66\u00a0years; range, 42\u201396\u00a0years) with PDAC who had undergone a dual-energy CT (DECT) of the abdomen for staging. One standard polyenergetic image (PEI) and five MEI(+) images in 10-keV intervals, ranging from 40 to 80\u00a0keV, were reconstructed. Line-density profile analysis, as well as the contrast-to-noise ratio (CNR) of the tumor, the signal-to-noise ratio (SNR) of the regular pancreas parenchyma and the tumor, and the CNR of the three main peripancreatic vessels, was calculated. For subjective quality assessment, two readers independently assessed the images using a 5-point Likert scale. Reader reliability was evaluated using an intraclass correlation coefficient.ResultsLine-density profile analysis revealed the largest gradient in attenuation between PDAC and regular tissue in MEI(+) at 40\u00a0keV. Low-keV MEI(+)reconstructions at 40 and 50\u00a0keV increased CNR and SNR compared to PEI (40\u00a0keV: CNR 46.8 vs. 7.5; SNRPankreas 32.5 vs. 15.7; SNRLesion 13.5 vs. 8.6; p\u2009<\u20090.001). MEI(+) at 40\u00a0keV and 50\u00a0keV were consistently preferred by the observers (p\u2009<\u20090.05), showing a high intra-observer 0.937 (0.92\u20130.95) and inter-observer 0.911 (0.89\u20130.93) agreement.ConclusionMEI(+) reconstructions at 40\u00a0keV and 50\u00a0keV provide better objective and subjective image quality compared to conventional PEI of DECT in patients with PDAC.Key Points\u2022 Low-keV MEI(+) reconstructions at 40 and 50\u00a0keV increase tumor-to-pancreas contrast compared to PEI.\u2022 Low-keV MEI(+) reconstructions improve objective and subjective image quality parameters compared to PEI.\u2022 Dual-energy post-processing might be a valuable tool in the diagnostic workup of patients with PDAC.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s00330-019-06116-9", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1289120", 
            "issn": [
              "0938-7994", 
              "1432-1084"
            ], 
            "name": "European Radiology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "7", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "pancreatic ductal adenocarcinoma", 
          "ductal adenocarcinoma", 
          "dual-energy CT", 
          "institutional review board", 
          "polyenergetic images", 
          "intraclass correlation coefficient", 
          "conventional polyenergetic images", 
          "diagnostic workup", 
          "pancreas parenchyma", 
          "ObjectivesThe aim", 
          "patients", 
          "peripancreatic vessels", 
          "review board", 
          "subjective image quality parameters", 
          "tumors", 
          "reader reliability", 
          "adenocarcinoma", 
          "subjective image quality", 
          "pancreas contrast", 
          "Likert scale", 
          "monoenergetic images", 
          "low keV", 
          "MethodsThis", 
          "abdomen", 
          "staging", 
          "workup", 
          "parenchyma", 
          "CT", 
          "valuable tool", 
          "quality assessment", 
          "correlation coefficient", 
          "image quality parameters", 
          "study", 
          "CNR", 
          "tissue", 
          "regular tissue", 
          "profile analysis", 
          "contrast", 
          "vessels", 
          "reconstruction", 
          "vs.", 
          "aim", 
          "interval", 
          "assessment", 
          "image quality", 
          "subjective comparison", 
          "ratio", 
          "polychromatic images", 
          "analysis", 
          "attenuation", 
          "quality", 
          "scale", 
          "comparison", 
          "image characteristics", 
          "characteristics", 
          "images", 
          "tool", 
          "observer", 
          "reliability", 
          "board", 
          "parameters", 
          "signals", 
          "quality parameters", 
          "noise ratio", 
          "readers", 
          "gradient", 
          "agreement", 
          "coefficient", 
          "SNR", 
          "large gradients", 
          "subjective quality assessment", 
          "algorithm", 
          "volts", 
          "kiloelectron volts", 
          "keV"
        ], 
        "name": "Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma", 
        "pagination": "3617-3625", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112860946"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00330-019-06116-9"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30888484"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00330-019-06116-9", 
          "https://app.dimensions.ai/details/publication/pub.1112860946"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-20T07:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_806.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s00330-019-06116-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06116-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    315 TRIPLES      22 PREDICATES      130 URIs      109 LITERALS      23 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00330-019-06116-9 schema:about N018af5dec10c44a3adb510b2a91ef170
    2 N16d5d607e0da4880a8240051a05c0ae0
    3 N22aaa5b924bb4d848d9a494a4ceb27a0
    4 N38154a73055247e9ae62a8b18e203bfe
    5 N5bd5aa3be7514450bf16839f6cb905db
    6 N6193290230b144f49ad98dcef08bd95b
    7 N66546389f8c74ee7937c740a1c89784b
    8 N7046894a0f914ddda514a1f30e05ee7a
    9 N88446da8590e44c499bbb0fc1f947463
    10 N8df07a9b419e448c949cb04ddc0e8673
    11 N9fe4dd6597794b5fa62cde435804d41b
    12 Nac09413f948c43f1becdee3b4dfac8c1
    13 Nc6f4afbc279a4b099bcf3a6d0f4e609c
    14 Nd58d6b054bb84d72902a1f8122787df6
    15 Ne30705e3894e4a34af2196c1970a0158
    16 Nebd235d580d54bb9af10fa0a84400f0d
    17 anzsrc-for:11
    18 anzsrc-for:1103
    19 schema:author Ne12d1e1440ff45779adb30630b971392
    20 schema:citation sg:pub.10.1007/s00261-014-0274-y
    21 sg:pub.10.1007/s00261-017-1151-2
    22 sg:pub.10.1007/s00261-017-1390-2
    23 sg:pub.10.1007/s00261-018-1808-5
    24 sg:pub.10.1007/s00330-015-3970-2
    25 sg:pub.10.1007/s00330-015-3997-4
    26 sg:pub.10.1007/s00330-016-4708-5
    27 sg:pub.10.1007/s00330-017-5258-1
    28 sg:pub.10.1007/s00330-018-5313-6
    29 sg:pub.10.1007/s00330-018-5338-x
    30 sg:pub.10.1007/s00330-018-5407-1
    31 sg:pub.10.1007/s00330-018-5762-y
    32 sg:pub.10.1007/s00330-018-5789-0
    33 schema:datePublished 2019-03-19
    34 schema:datePublishedReg 2019-03-19
    35 schema:description ObjectivesThe aim of this study was to assess the objective and subjective image characteristics of monoenergetic images (MEI[+]), using a noise-optimized algorithm at different kiloelectron volts (keV) compared to polyenergetic images (PEI), in patients with pancreatic ductal adenocarcinoma (PDAC).MethodsThis retrospective, institutional review board-approved study included 45 patients (18 male, 27 female; mean age 66 years; range, 42–96 years) with PDAC who had undergone a dual-energy CT (DECT) of the abdomen for staging. One standard polyenergetic image (PEI) and five MEI(+) images in 10-keV intervals, ranging from 40 to 80 keV, were reconstructed. Line-density profile analysis, as well as the contrast-to-noise ratio (CNR) of the tumor, the signal-to-noise ratio (SNR) of the regular pancreas parenchyma and the tumor, and the CNR of the three main peripancreatic vessels, was calculated. For subjective quality assessment, two readers independently assessed the images using a 5-point Likert scale. Reader reliability was evaluated using an intraclass correlation coefficient.ResultsLine-density profile analysis revealed the largest gradient in attenuation between PDAC and regular tissue in MEI(+) at 40 keV. Low-keV MEI(+)reconstructions at 40 and 50 keV increased CNR and SNR compared to PEI (40 keV: CNR 46.8 vs. 7.5; SNRPankreas 32.5 vs. 15.7; SNRLesion 13.5 vs. 8.6; p < 0.001). MEI(+) at 40 keV and 50 keV were consistently preferred by the observers (p < 0.05), showing a high intra-observer 0.937 (0.92–0.95) and inter-observer 0.911 (0.89–0.93) agreement.ConclusionMEI(+) reconstructions at 40 keV and 50 keV provide better objective and subjective image quality compared to conventional PEI of DECT in patients with PDAC.Key Points• Low-keV MEI(+) reconstructions at 40 and 50 keV increase tumor-to-pancreas contrast compared to PEI.• Low-keV MEI(+) reconstructions improve objective and subjective image quality parameters compared to PEI.• Dual-energy post-processing might be a valuable tool in the diagnostic workup of patients with PDAC.
    36 schema:genre article
    37 schema:inLanguage en
    38 schema:isAccessibleForFree true
    39 schema:isPartOf N08ebf52fabea4c9cb13c8eb62afa4f7c
    40 N7985d16473f24b0c906f31d8ff793669
    41 sg:journal.1289120
    42 schema:keywords CNR
    43 CT
    44 Likert scale
    45 MethodsThis
    46 ObjectivesThe aim
    47 SNR
    48 abdomen
    49 adenocarcinoma
    50 agreement
    51 aim
    52 algorithm
    53 analysis
    54 assessment
    55 attenuation
    56 board
    57 characteristics
    58 coefficient
    59 comparison
    60 contrast
    61 conventional polyenergetic images
    62 correlation coefficient
    63 diagnostic workup
    64 dual-energy CT
    65 ductal adenocarcinoma
    66 gradient
    67 image characteristics
    68 image quality
    69 image quality parameters
    70 images
    71 institutional review board
    72 interval
    73 intraclass correlation coefficient
    74 keV
    75 kiloelectron volts
    76 large gradients
    77 low keV
    78 monoenergetic images
    79 noise ratio
    80 observer
    81 pancreas contrast
    82 pancreas parenchyma
    83 pancreatic ductal adenocarcinoma
    84 parameters
    85 parenchyma
    86 patients
    87 peripancreatic vessels
    88 polychromatic images
    89 polyenergetic images
    90 profile analysis
    91 quality
    92 quality assessment
    93 quality parameters
    94 ratio
    95 reader reliability
    96 readers
    97 reconstruction
    98 regular tissue
    99 reliability
    100 review board
    101 scale
    102 signals
    103 staging
    104 study
    105 subjective comparison
    106 subjective image quality
    107 subjective image quality parameters
    108 subjective quality assessment
    109 tissue
    110 tool
    111 tumors
    112 valuable tool
    113 vessels
    114 volts
    115 vs.
    116 workup
    117 schema:name Objective and subjective comparison of virtual monoenergetic vs. polychromatic images in patients with pancreatic ductal adenocarcinoma
    118 schema:pagination 3617-3625
    119 schema:productId Nc070e7b9d1774652a51f1b56d2cbb942
    120 Nc0a4832a1ab84d2888dc2d34cd549781
    121 Nf6a79e82aad84d7a9ff9b8c3643f552e
    122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112860946
    123 https://doi.org/10.1007/s00330-019-06116-9
    124 schema:sdDatePublished 2022-05-20T07:35
    125 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    126 schema:sdPublisher N126ada5d3be94e5e93a9e2504000f884
    127 schema:url https://doi.org/10.1007/s00330-019-06116-9
    128 sgo:license sg:explorer/license/
    129 sgo:sdDataset articles
    130 rdf:type schema:ScholarlyArticle
    131 N014fea7aee164e8fa87de2545b427907 rdf:first sg:person.015064311225.33
    132 rdf:rest N4304f23d1f424028b1d4bf5168c48898
    133 N018af5dec10c44a3adb510b2a91ef170 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    134 schema:name Reproducibility of Results
    135 rdf:type schema:DefinedTerm
    136 N08ebf52fabea4c9cb13c8eb62afa4f7c schema:issueNumber 7
    137 rdf:type schema:PublicationIssue
    138 N126ada5d3be94e5e93a9e2504000f884 schema:name Springer Nature - SN SciGraph project
    139 rdf:type schema:Organization
    140 N16d5d607e0da4880a8240051a05c0ae0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    141 schema:name Male
    142 rdf:type schema:DefinedTerm
    143 N22aaa5b924bb4d848d9a494a4ceb27a0 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    144 schema:name Radiography, Dual-Energy Scanned Projection
    145 rdf:type schema:DefinedTerm
    146 N38154a73055247e9ae62a8b18e203bfe schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    147 schema:name Middle Aged
    148 rdf:type schema:DefinedTerm
    149 N4304f23d1f424028b1d4bf5168c48898 rdf:first sg:person.0675016037.33
    150 rdf:rest N5d62acc793794b42ac34fdba42de4d2d
    151 N4502e47387294a878f635b6ce4dc374b rdf:first sg:person.0616320524.26
    152 rdf:rest Nc438717237d84f4d81e7fcba71406668
    153 N4ac5ade846af499b8cd583edada58049 rdf:first sg:person.01312256453.29
    154 rdf:rest rdf:nil
    155 N5bd5aa3be7514450bf16839f6cb905db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    156 schema:name Image Processing, Computer-Assisted
    157 rdf:type schema:DefinedTerm
    158 N5d62acc793794b42ac34fdba42de4d2d rdf:first sg:person.0603017413.32
    159 rdf:rest N4502e47387294a878f635b6ce4dc374b
    160 N6193290230b144f49ad98dcef08bd95b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    161 schema:name Aged
    162 rdf:type schema:DefinedTerm
    163 N66546389f8c74ee7937c740a1c89784b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    164 schema:name Adult
    165 rdf:type schema:DefinedTerm
    166 N7046894a0f914ddda514a1f30e05ee7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    167 schema:name Female
    168 rdf:type schema:DefinedTerm
    169 N7985d16473f24b0c906f31d8ff793669 schema:volumeNumber 29
    170 rdf:type schema:PublicationVolume
    171 N88446da8590e44c499bbb0fc1f947463 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    172 schema:name Aged, 80 and over
    173 rdf:type schema:DefinedTerm
    174 N8df07a9b419e448c949cb04ddc0e8673 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    175 schema:name Humans
    176 rdf:type schema:DefinedTerm
    177 N9fe4dd6597794b5fa62cde435804d41b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    178 schema:name Carcinoma, Pancreatic Ductal
    179 rdf:type schema:DefinedTerm
    180 Nac09413f948c43f1becdee3b4dfac8c1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    181 schema:name Virtual Reality
    182 rdf:type schema:DefinedTerm
    183 Nc070e7b9d1774652a51f1b56d2cbb942 schema:name doi
    184 schema:value 10.1007/s00330-019-06116-9
    185 rdf:type schema:PropertyValue
    186 Nc0a4832a1ab84d2888dc2d34cd549781 schema:name pubmed_id
    187 schema:value 30888484
    188 rdf:type schema:PropertyValue
    189 Nc438717237d84f4d81e7fcba71406668 rdf:first sg:person.01325507765.65
    190 rdf:rest N4ac5ade846af499b8cd583edada58049
    191 Nc6f4afbc279a4b099bcf3a6d0f4e609c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    192 schema:name Algorithms
    193 rdf:type schema:DefinedTerm
    194 Nd58d6b054bb84d72902a1f8122787df6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    195 schema:name Pancreatic Neoplasms
    196 rdf:type schema:DefinedTerm
    197 Ne0faf4fb8b2a485da7396f468e9334ed rdf:first sg:person.01075601514.45
    198 rdf:rest Nf098aa6a3f9c4b22a3fdc4922de8fe8b
    199 Ne12d1e1440ff45779adb30630b971392 rdf:first sg:person.01261164020.08
    200 rdf:rest Ne0faf4fb8b2a485da7396f468e9334ed
    201 Ne30705e3894e4a34af2196c1970a0158 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    202 schema:name Retrospective Studies
    203 rdf:type schema:DefinedTerm
    204 Nebd235d580d54bb9af10fa0a84400f0d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    205 schema:name Pancreas
    206 rdf:type schema:DefinedTerm
    207 Nf098aa6a3f9c4b22a3fdc4922de8fe8b rdf:first sg:person.0610263641.84
    208 rdf:rest N014fea7aee164e8fa87de2545b427907
    209 Nf6a79e82aad84d7a9ff9b8c3643f552e schema:name dimensions_id
    210 schema:value pub.1112860946
    211 rdf:type schema:PropertyValue
    212 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    213 schema:name Medical and Health Sciences
    214 rdf:type schema:DefinedTerm
    215 anzsrc-for:1103 schema:inDefinedTermSet anzsrc-for:
    216 schema:name Clinical Sciences
    217 rdf:type schema:DefinedTerm
    218 sg:journal.1289120 schema:issn 0938-7994
    219 1432-1084
    220 schema:name European Radiology
    221 schema:publisher Springer Nature
    222 rdf:type schema:Periodical
    223 sg:person.01075601514.45 schema:affiliation grid-institutes:grid.22937.3d
    224 schema:familyName Toepker
    225 schema:givenName Michael
    226 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01075601514.45
    227 rdf:type schema:Person
    228 sg:person.01261164020.08 schema:affiliation grid-institutes:grid.22937.3d
    229 schema:familyName Beer
    230 schema:givenName Lucian
    231 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01261164020.08
    232 rdf:type schema:Person
    233 sg:person.01312256453.29 schema:affiliation grid-institutes:grid.411778.c
    234 schema:familyName Apfaltrer
    235 schema:givenName Paul
    236 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01312256453.29
    237 rdf:type schema:Person
    238 sg:person.01325507765.65 schema:affiliation grid-institutes:grid.22937.3d
    239 schema:familyName Ringl
    240 schema:givenName Helmut
    241 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325507765.65
    242 rdf:type schema:Person
    243 sg:person.015064311225.33 schema:affiliation grid-institutes:grid.22937.3d
    244 schema:familyName Schestak
    245 schema:givenName Christian
    246 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064311225.33
    247 rdf:type schema:Person
    248 sg:person.0603017413.32 schema:affiliation grid-institutes:grid.22937.3d
    249 schema:familyName Schindl
    250 schema:givenName Martin
    251 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0603017413.32
    252 rdf:type schema:Person
    253 sg:person.0610263641.84 schema:affiliation grid-institutes:grid.22937.3d
    254 schema:familyName Ba-Ssalamah
    255 schema:givenName Ahmed
    256 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0610263641.84
    257 rdf:type schema:Person
    258 sg:person.0616320524.26 schema:affiliation grid-institutes:grid.22937.3d
    259 schema:familyName Wressnegger
    260 schema:givenName Alexander
    261 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616320524.26
    262 rdf:type schema:Person
    263 sg:person.0675016037.33 schema:affiliation grid-institutes:grid.22937.3d
    264 schema:familyName Dutschke
    265 schema:givenName Anja
    266 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0675016037.33
    267 rdf:type schema:Person
    268 sg:pub.10.1007/s00261-014-0274-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1029968972
    269 https://doi.org/10.1007/s00261-014-0274-y
    270 rdf:type schema:CreativeWork
    271 sg:pub.10.1007/s00261-017-1151-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084906944
    272 https://doi.org/10.1007/s00261-017-1151-2
    273 rdf:type schema:CreativeWork
    274 sg:pub.10.1007/s00261-017-1390-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092689580
    275 https://doi.org/10.1007/s00261-017-1390-2
    276 rdf:type schema:CreativeWork
    277 sg:pub.10.1007/s00261-018-1808-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109808999
    278 https://doi.org/10.1007/s00261-018-1808-5
    279 rdf:type schema:CreativeWork
    280 sg:pub.10.1007/s00330-015-3970-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026304837
    281 https://doi.org/10.1007/s00330-015-3970-2
    282 rdf:type schema:CreativeWork
    283 sg:pub.10.1007/s00330-015-3997-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034203331
    284 https://doi.org/10.1007/s00330-015-3997-4
    285 rdf:type schema:CreativeWork
    286 sg:pub.10.1007/s00330-016-4708-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002739230
    287 https://doi.org/10.1007/s00330-016-4708-5
    288 rdf:type schema:CreativeWork
    289 sg:pub.10.1007/s00330-017-5258-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100481784
    290 https://doi.org/10.1007/s00330-017-5258-1
    291 rdf:type schema:CreativeWork
    292 sg:pub.10.1007/s00330-018-5313-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101110900
    293 https://doi.org/10.1007/s00330-018-5313-6
    294 rdf:type schema:CreativeWork
    295 sg:pub.10.1007/s00330-018-5338-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1101110902
    296 https://doi.org/10.1007/s00330-018-5338-x
    297 rdf:type schema:CreativeWork
    298 sg:pub.10.1007/s00330-018-5407-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103247651
    299 https://doi.org/10.1007/s00330-018-5407-1
    300 rdf:type schema:CreativeWork
    301 sg:pub.10.1007/s00330-018-5762-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107711873
    302 https://doi.org/10.1007/s00330-018-5762-y
    303 rdf:type schema:CreativeWork
    304 sg:pub.10.1007/s00330-018-5789-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107923978
    305 https://doi.org/10.1007/s00330-018-5789-0
    306 rdf:type schema:CreativeWork
    307 grid-institutes:grid.22937.3d schema:alternateName Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
    308 Department of Surgery, Medical University of Vienna, Vienna, Austria
    309 schema:name Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
    310 Department of Surgery, Medical University of Vienna, Vienna, Austria
    311 rdf:type schema:Organization
    312 grid-institutes:grid.411778.c schema:alternateName Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
    313 schema:name Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
    314 Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
    315 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...