Automated quantitative evaluation of brain MRI may be more accurate for discriminating preterm born adults View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-22

AUTHORS

Alina Jurcoane, Marcel Daamen, Vera C. Keil, Lukas Scheef, Josef G. Bäuml, Chun Meng, Afra M. Wohlschläger, Christian Sorg, Barbara Busch, Nicole Baumann, Dieter Wolke, Peter Bartmann, Henning Boecker, Guido Lüchters, Milka Marinova, Elke Hattingen

ABSTRACT

OBJECTIVE: To investigate the structural brain abnormalities and their diagnostic accuracy through qualitative and quantitative analysis in term born and very preterm birth or with very low birth weight (VP/VLBW) adults. METHODS: We analyzed 3-T MRIs acquired in 2011-2013 from 67 adults (27 term born controls, mean age 26.4 years, 8 females; 40 VP/VLBWs, mean age 26.6 years, 16 females). We compared automatic segmentations of the white matter, deep gray matter and cortical gray matter, manual corpus callosum measurements and visual ratings of the ventricles and white matter with t tests, logistic regression, and receiver operator characteristic (ROC) curves. RESULTS: Automatic segmentation correctly classified 84% of cases; visual ratings correctly classified 63%. Quantitative volumetry based on automatic segmentation revealed higher ventricular volume, lower posterior corpus callosum, and deep gray matter volumes in VP/VLBW subjects compared to controls (p < 0.01). Visual rating and manual measurement revealed a thinner corpus callosum in VP/VLBW adults (p = 0.04) and deformed lateral ventricles (p = 0.03) and tendency towards more "dirty" white matter (p = 0.06). Automatic/manual measures combined with visual ratings correctly classified 87% of cases. Stepwise logistic regression identified three independent features that correctly classify 81% of cases: ventricular volume, deep gray matter volume, and white matter aspect. CONCLUSION: Enlarged and deformed lateral ventricles, thinner corpus callosum, and "dirty" white matter are prevalent in preterm born adults. Their visual evaluation has low diagnostic accuracy. Automatic volume quantification is more accurate but time consuming. It may be useful to ask for prematurity before initiating further diagnostics in subjects with these alterations. KEY POINTS: • Our study confirms prior reports showing that structural brain abnormalities related to preterm birth persist into adulthood. • In the clinical practice, if large and deformed lateral ventricles, small and thin corpus callosum, and "dirty" white matter are visible on MRI, ask for prematurity before considering other diagnoses. • Although prevalent, visual findings have low accuracy; adding automatic segmentation of lateral ventricles and deep gray matter nuclei improves the diagnostic accuracy. More... »

PAGES

1-10

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06099-7

DOI

http://dx.doi.org/10.1007/s00330-019-06099-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112943571

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30903339


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1114", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Paediatrics and Reproductive Medicine", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University Hospital Frankfurt", 
          "id": "https://www.grid.ac/institutes/grid.411088.4", 
          "name": [
            "Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany", 
            "Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany", 
            "Department of Neonatology, University Hospital Bonn, Bonn, Germany", 
            "Institute for Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jurcoane", 
        "givenName": "Alina", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany", 
            "Department of Neonatology, University Hospital Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Daamen", 
        "givenName": "Marcel", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Keil", 
        "givenName": "Vera C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Scheef", 
        "givenName": "Lukas", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany", 
            "TUM-NIC Neuroimaging Center, Technische Universit\u00e4t M\u00fcnchen, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "B\u00e4uml", 
        "givenName": "Josef G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany", 
            "TUM-NIC Neuroimaging Center, Technische Universit\u00e4t M\u00fcnchen, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Chun", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Technical University Munich", 
          "id": "https://www.grid.ac/institutes/grid.6936.a", 
          "name": [
            "Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany", 
            "TUM-NIC Neuroimaging Center, Technische Universit\u00e4t M\u00fcnchen, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wohlschl\u00e4ger", 
        "givenName": "Afra M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Rechts der Isar Hospital", 
          "id": "https://www.grid.ac/institutes/grid.15474.33", 
          "name": [
            "Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany", 
            "TUM-NIC Neuroimaging Center, Technische Universit\u00e4t M\u00fcnchen, Munich, Germany", 
            "Department of Psychiatry, Klinikum rechts der Isar, Munich, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sorg", 
        "givenName": "Christian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Neonatology, University Hospital Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Busch", 
        "givenName": "Barbara", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Psychology, University of Warwick, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumann", 
        "givenName": "Nicole", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Warwick", 
          "id": "https://www.grid.ac/institutes/grid.7372.1", 
          "name": [
            "Department of Psychology, University of Warwick, Coventry, UK", 
            "Warwick Medical School, University of Warwick, Coventry, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wolke", 
        "givenName": "Dieter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Neonatology, University Hospital Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bartmann", 
        "givenName": "Peter", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boecker", 
        "givenName": "Henning", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Bonn", 
          "id": "https://www.grid.ac/institutes/grid.10388.32", 
          "name": [
            "Center for Development Research, University of Bonn, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "L\u00fcchters", 
        "givenName": "Guido", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marinova", 
        "givenName": "Milka", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Frankfurt", 
          "id": "https://www.grid.ac/institutes/grid.411088.4", 
          "name": [
            "Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany", 
            "Institute for Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hattingen", 
        "givenName": "Elke", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/wnr.0000000000000296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002942037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnr.0000000000000296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002942037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797615596230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003836446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0956797615596230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003836446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-010-0700-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004720190", 
          "https://doi.org/10.1007/s00234-010-0700-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-010-0700-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004720190", 
          "https://doi.org/10.1007/s00234-010-0700-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2015.09.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004919043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eplepsyres.2015.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007923238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1053/j.semperi.2009.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008598765"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pediatrneurol.2010.05.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009454523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2014.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011070090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awm282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014565461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00234-013-1242-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014843578", 
          "https://doi.org/10.1007/s00234-013-1242-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)60496-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015818418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(14)60496-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015818418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00429-015-1032-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016374505", 
          "https://doi.org/10.1007/s00429-015-1032-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(08)60136-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020496702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejm200201173460302", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020802204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1469-8749.2012.04378.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022376764"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1474-4422(09)70257-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024045795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pediatrneurol.2013.03.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025198280"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(12)60820-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025793568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025930903"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jcpp.12358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026227803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1542/peds.2015-3148", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026587654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.2005.075465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026715151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/gco.0000000000000156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/gco.0000000000000156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028417930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12028-009-9324-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203502", 
          "https://doi.org/10.1007/s12028-009-9324-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12028-009-9324-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030203502", 
          "https://doi.org/10.1007/s12028-009-9324-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a1399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031733662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/jama.2011.1331", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032625496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036173681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.spen.2009.09.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036629975"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1471-0528.12281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037793042"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejmoa010856", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042213276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejpn.2014.04.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042643721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0140-6736(98)07130-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044428410"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earlhumdev.2013.08.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044852459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11065-010-9132-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049892149", 
          "https://doi.org/10.1007/s11065-010-9132-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11065-010-9132-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049892149", 
          "https://doi.org/10.1007/s11065-010-9132-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.siny.2006.07.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050377697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earlhumdev.2005.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052474870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.earlhumdev.2005.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052474870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.siny.2013.11.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053045259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0012162299000201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054777557"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1055/s-0035-1552936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057339225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/cercor/bhu133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059458446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/dmcn.13380", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074200358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1076599371", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185113497476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078770571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/0284185113497476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078770571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jacr.2017.12.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100793475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109705929", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-4541-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705929", 
          "https://doi.org/10.1007/978-1-4899-4541-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.2517-6161.1995.tb02031.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1110458929"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-22", 
    "datePublishedReg": "2019-03-22", 
    "description": "OBJECTIVE: To investigate the structural brain abnormalities and their diagnostic accuracy through qualitative and quantitative analysis in term born and very preterm birth or with very low birth weight (VP/VLBW) adults.\nMETHODS: We analyzed 3-T MRIs acquired in 2011-2013 from 67 adults (27 term born controls, mean age 26.4\u00a0years, 8 females; 40 VP/VLBWs, mean age 26.6\u00a0years, 16 females). We compared automatic segmentations of the white matter, deep gray matter and cortical gray matter, manual corpus callosum measurements and visual ratings of the ventricles and white matter with t tests, logistic regression, and receiver operator characteristic (ROC) curves.\nRESULTS: Automatic segmentation correctly classified 84% of cases; visual ratings correctly classified 63%. Quantitative volumetry based on automatic segmentation revealed higher ventricular volume, lower posterior corpus callosum, and deep gray matter volumes in VP/VLBW subjects compared to controls (p\u2009<\u20090.01). Visual rating and manual measurement revealed a thinner corpus callosum in VP/VLBW adults (p\u2009=\u20090.04) and deformed lateral ventricles (p\u2009=\u20090.03) and tendency towards more \"dirty\" white matter (p\u2009=\u20090.06). Automatic/manual measures combined with visual ratings correctly classified 87% of cases. Stepwise logistic regression identified three independent features that correctly classify 81% of cases: ventricular volume, deep gray matter volume, and white matter aspect.\nCONCLUSION: Enlarged and deformed lateral ventricles, thinner corpus callosum, and \"dirty\" white matter are prevalent in preterm born adults. Their visual evaluation has low diagnostic accuracy. Automatic volume quantification is more accurate but time consuming. It may be useful to ask for prematurity before initiating further diagnostics in subjects with these alterations.\nKEY POINTS: \u2022 Our study confirms prior reports showing that structural brain abnormalities related to preterm birth persist into adulthood. \u2022 In the clinical practice, if large and deformed lateral ventricles, small and thin corpus callosum, and \"dirty\" white matter are visible on MRI, ask for prematurity before considering other diagnoses. \u2022 Although prevalent, visual findings have low accuracy; adding automatic segmentation of lateral ventricles and deep gray matter nuclei improves the diagnostic accuracy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-019-06099-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Automated quantitative evaluation of brain MRI may be more accurate for discriminating preterm born adults", 
    "pagination": "1-10", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "41ba4afaccd0ae59f9aec87322cbed7d9e4c7477316529f436b3273e6eed01b1"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30903339"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06099-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112943571"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06099-7", 
      "https://app.dimensions.ai/details/publication/pub.1112943571"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72853_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-019-06099-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06099-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06099-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06099-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06099-7'


 

This table displays all metadata directly associated to this object as RDF triples.

331 TRIPLES      21 PREDICATES      73 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06099-7 schema:about anzsrc-for:11
2 anzsrc-for:1114
3 schema:author N9e90d5d694044d9a9e72992bc53c9dc4
4 schema:citation sg:pub.10.1007/978-1-4899-4541-9
5 sg:pub.10.1007/s00234-010-0700-y
6 sg:pub.10.1007/s00234-013-1242-x
7 sg:pub.10.1007/s00429-015-1032-9
8 sg:pub.10.1007/s11065-010-9132-z
9 sg:pub.10.1007/s12028-009-9324-7
10 https://app.dimensions.ai/details/publication/pub.1076599371
11 https://app.dimensions.ai/details/publication/pub.1109705929
12 https://doi.org/10.1001/jama.2011.1331
13 https://doi.org/10.1002/hbm.23031
14 https://doi.org/10.1016/j.earlhumdev.2005.07.004
15 https://doi.org/10.1016/j.earlhumdev.2013.08.011
16 https://doi.org/10.1016/j.ejpn.2014.04.004
17 https://doi.org/10.1016/j.eplepsyres.2015.07.004
18 https://doi.org/10.1016/j.jacr.2017.12.028
19 https://doi.org/10.1016/j.neuroimage.2011.09.015
20 https://doi.org/10.1016/j.nicl.2014.08.005
21 https://doi.org/10.1016/j.nicl.2015.09.002
22 https://doi.org/10.1016/j.pediatrneurol.2010.05.014
23 https://doi.org/10.1016/j.pediatrneurol.2013.03.006
24 https://doi.org/10.1016/j.siny.2006.07.006
25 https://doi.org/10.1016/j.siny.2013.11.012
26 https://doi.org/10.1016/j.spen.2009.09.005
27 https://doi.org/10.1016/s0140-6736(08)60136-1
28 https://doi.org/10.1016/s0140-6736(12)60820-4
29 https://doi.org/10.1016/s0140-6736(14)60496-7
30 https://doi.org/10.1016/s0140-6736(98)07130-x
31 https://doi.org/10.1016/s1474-4422(09)70257-1
32 https://doi.org/10.1017/s0012162299000201
33 https://doi.org/10.1053/j.semperi.2009.10.006
34 https://doi.org/10.1055/s-0035-1552936
35 https://doi.org/10.1056/nejm200201173460302
36 https://doi.org/10.1056/nejmoa010856
37 https://doi.org/10.1093/brain/awm282
38 https://doi.org/10.1093/cercor/bhu133
39 https://doi.org/10.1097/gco.0000000000000156
40 https://doi.org/10.1097/wnr.0000000000000296
41 https://doi.org/10.1111/1471-0528.12281
42 https://doi.org/10.1111/dmcn.13380
43 https://doi.org/10.1111/j.1469-8749.2012.04378.x
44 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
45 https://doi.org/10.1111/jcpp.12358
46 https://doi.org/10.1136/jnnp.2005.075465
47 https://doi.org/10.1177/0284185113497476
48 https://doi.org/10.1177/0956797615596230
49 https://doi.org/10.1542/peds.2015-3148
50 https://doi.org/10.3174/ajnr.a1399
51 schema:datePublished 2019-03-22
52 schema:datePublishedReg 2019-03-22
53 schema:description OBJECTIVE: To investigate the structural brain abnormalities and their diagnostic accuracy through qualitative and quantitative analysis in term born and very preterm birth or with very low birth weight (VP/VLBW) adults. METHODS: We analyzed 3-T MRIs acquired in 2011-2013 from 67 adults (27 term born controls, mean age 26.4 years, 8 females; 40 VP/VLBWs, mean age 26.6 years, 16 females). We compared automatic segmentations of the white matter, deep gray matter and cortical gray matter, manual corpus callosum measurements and visual ratings of the ventricles and white matter with t tests, logistic regression, and receiver operator characteristic (ROC) curves. RESULTS: Automatic segmentation correctly classified 84% of cases; visual ratings correctly classified 63%. Quantitative volumetry based on automatic segmentation revealed higher ventricular volume, lower posterior corpus callosum, and deep gray matter volumes in VP/VLBW subjects compared to controls (p < 0.01). Visual rating and manual measurement revealed a thinner corpus callosum in VP/VLBW adults (p = 0.04) and deformed lateral ventricles (p = 0.03) and tendency towards more "dirty" white matter (p = 0.06). Automatic/manual measures combined with visual ratings correctly classified 87% of cases. Stepwise logistic regression identified three independent features that correctly classify 81% of cases: ventricular volume, deep gray matter volume, and white matter aspect. CONCLUSION: Enlarged and deformed lateral ventricles, thinner corpus callosum, and "dirty" white matter are prevalent in preterm born adults. Their visual evaluation has low diagnostic accuracy. Automatic volume quantification is more accurate but time consuming. It may be useful to ask for prematurity before initiating further diagnostics in subjects with these alterations. KEY POINTS: • Our study confirms prior reports showing that structural brain abnormalities related to preterm birth persist into adulthood. • In the clinical practice, if large and deformed lateral ventricles, small and thin corpus callosum, and "dirty" white matter are visible on MRI, ask for prematurity before considering other diagnoses. • Although prevalent, visual findings have low accuracy; adding automatic segmentation of lateral ventricles and deep gray matter nuclei improves the diagnostic accuracy.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf sg:journal.1289120
58 schema:name Automated quantitative evaluation of brain MRI may be more accurate for discriminating preterm born adults
59 schema:pagination 1-10
60 schema:productId N1c386d0be7b14169a78c3d0552a677ba
61 N2fa1e39042974e0aab727d8fee9d9665
62 N632ea1c4f5cb4a49b65e259ffaa13591
63 N649fe9a2f68a4692beb3656b998ee59e
64 Nff4d1584a085465fa8380b1a7d81b254
65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112943571
66 https://doi.org/10.1007/s00330-019-06099-7
67 schema:sdDatePublished 2019-04-11T12:53
68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
69 schema:sdPublisher Nd28cc2406ea8498698748fb7c23a3ca8
70 schema:url https://link.springer.com/10.1007%2Fs00330-019-06099-7
71 sgo:license sg:explorer/license/
72 sgo:sdDataset articles
73 rdf:type schema:ScholarlyArticle
74 N00f37e852cf14116bc5eea48caa1b3de rdf:first N6a893977ad9447118caccefd6a8b2251
75 rdf:rest N63cd8a1ab99d42a0be7d95373e04d0b4
76 N0836e83584a647258839535bd3bc67ef schema:affiliation https://www.grid.ac/institutes/grid.411088.4
77 schema:familyName Jurcoane
78 schema:givenName Alina
79 rdf:type schema:Person
80 N0b23a2d08bdd4f5b992d7672a15db94e schema:name Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
81 rdf:type schema:Organization
82 N13aeaa3ef4614d3db870bb88b7db18ec rdf:first N699f4174a1ac4a33a2d1a2ecb989a6b4
83 rdf:rest Nf414f520a80641d4b0a0b6109e41db69
84 N1a371eb44cd3468dba8c369235681d9d schema:affiliation Nb107273dfba747c7a759577aa8f786df
85 schema:familyName Scheef
86 schema:givenName Lukas
87 rdf:type schema:Person
88 N1c386d0be7b14169a78c3d0552a677ba schema:name dimensions_id
89 schema:value pub.1112943571
90 rdf:type schema:PropertyValue
91 N24b9e68ae1c24d70a0ab519301511e8e schema:affiliation https://www.grid.ac/institutes/grid.15474.33
92 schema:familyName Sorg
93 schema:givenName Christian
94 rdf:type schema:Person
95 N2c2455d57d7c46aa9701d88581434ebe rdf:first Ne57c19123ace455eb6464d83b9be9fd7
96 rdf:rest Naed1db64650a41d3b32248c334d247a7
97 N2c4f44466e504e02a8b031c9cfd0e9b0 schema:affiliation N3d59e88cbfd74152a5f1f16fa0821772
98 schema:familyName Daamen
99 schema:givenName Marcel
100 rdf:type schema:Person
101 N2ecb822da1ab4345a555645f4061e415 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
102 schema:familyName Wohlschläger
103 schema:givenName Afra M.
104 rdf:type schema:Person
105 N2fa1e39042974e0aab727d8fee9d9665 schema:name pubmed_id
106 schema:value 30903339
107 rdf:type schema:PropertyValue
108 N3d59e88cbfd74152a5f1f16fa0821772 schema:name Department of Neonatology, University Hospital Bonn, Bonn, Germany
109 Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
110 rdf:type schema:Organization
111 N44b17cdabad14604b700567861f62309 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
112 schema:familyName Meng
113 schema:givenName Chun
114 rdf:type schema:Person
115 N45d81281fb3a41288913b71d460b50f2 rdf:first N2ecb822da1ab4345a555645f4061e415
116 rdf:rest Na3e261d3184644b396a28bf6866bbe3c
117 N4ebfd5761583493eaa6fbddf862985a0 rdf:first N97af9f3d4db84809b2bca20ff3655532
118 rdf:rest N6dfdb6a0b0da46c7a2c1fb8dfd9ed934
119 N51b9a547f7454894be4e806bdee190cb schema:affiliation N0b23a2d08bdd4f5b992d7672a15db94e
120 schema:familyName Keil
121 schema:givenName Vera C.
122 rdf:type schema:Person
123 N5bd61666e934434b97b672c3b9606eed schema:affiliation Na3cf4466a8b74e978a5a5e10cb60144c
124 schema:familyName Boecker
125 schema:givenName Henning
126 rdf:type schema:Person
127 N632ea1c4f5cb4a49b65e259ffaa13591 schema:name doi
128 schema:value 10.1007/s00330-019-06099-7
129 rdf:type schema:PropertyValue
130 N63cd8a1ab99d42a0be7d95373e04d0b4 rdf:first Ncd3cec52e8cc404ea6629929a212e0a6
131 rdf:rest N13aeaa3ef4614d3db870bb88b7db18ec
132 N649fe9a2f68a4692beb3656b998ee59e schema:name readcube_id
133 schema:value 41ba4afaccd0ae59f9aec87322cbed7d9e4c7477316529f436b3273e6eed01b1
134 rdf:type schema:PropertyValue
135 N6757259e3ca64fb7830a4555f5d3939d schema:affiliation https://www.grid.ac/institutes/grid.411088.4
136 schema:familyName Hattingen
137 schema:givenName Elke
138 rdf:type schema:Person
139 N699f4174a1ac4a33a2d1a2ecb989a6b4 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
140 schema:familyName Wolke
141 schema:givenName Dieter
142 rdf:type schema:Person
143 N6a893977ad9447118caccefd6a8b2251 schema:affiliation N97862cceadb446fa8f1d8e50991470b1
144 schema:familyName Busch
145 schema:givenName Barbara
146 rdf:type schema:Person
147 N6dfdb6a0b0da46c7a2c1fb8dfd9ed934 rdf:first N44b17cdabad14604b700567861f62309
148 rdf:rest N45d81281fb3a41288913b71d460b50f2
149 N8beb76f5a4864fb0b2ce2a9c670bb4de rdf:first N51b9a547f7454894be4e806bdee190cb
150 rdf:rest Ne6dd295e488c4cae828f76e87ca3de2e
151 N97862cceadb446fa8f1d8e50991470b1 schema:name Department of Neonatology, University Hospital Bonn, Bonn, Germany
152 rdf:type schema:Organization
153 N97af9f3d4db84809b2bca20ff3655532 schema:affiliation https://www.grid.ac/institutes/grid.6936.a
154 schema:familyName Bäuml
155 schema:givenName Josef G.
156 rdf:type schema:Person
157 N9e90d5d694044d9a9e72992bc53c9dc4 rdf:first N0836e83584a647258839535bd3bc67ef
158 rdf:rest Nedd8f6737d02449e9877658935a38306
159 Na3cf4466a8b74e978a5a5e10cb60144c schema:name Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
160 rdf:type schema:Organization
161 Na3e261d3184644b396a28bf6866bbe3c rdf:first N24b9e68ae1c24d70a0ab519301511e8e
162 rdf:rest N00f37e852cf14116bc5eea48caa1b3de
163 Nac2101bc895442fbb72b5f709722dc77 rdf:first N5bd61666e934434b97b672c3b9606eed
164 rdf:rest N2c2455d57d7c46aa9701d88581434ebe
165 Nac5c1ce52d56451a91b33dc5c66dbad6 schema:affiliation Nfbfd3cb95b1c4a1ab7eebee2087ee94d
166 schema:familyName Marinova
167 schema:givenName Milka
168 rdf:type schema:Person
169 Naed1db64650a41d3b32248c334d247a7 rdf:first Nac5c1ce52d56451a91b33dc5c66dbad6
170 rdf:rest Neb99262a4bfa4446827bb6ee5b945d02
171 Nb107273dfba747c7a759577aa8f786df schema:name Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
172 rdf:type schema:Organization
173 Nb14466a8baf941b790f035c16477c841 schema:affiliation Nff5d62311ca74b939a2523dccdd36083
174 schema:familyName Bartmann
175 schema:givenName Peter
176 rdf:type schema:Person
177 Ncd3cec52e8cc404ea6629929a212e0a6 schema:affiliation https://www.grid.ac/institutes/grid.7372.1
178 schema:familyName Baumann
179 schema:givenName Nicole
180 rdf:type schema:Person
181 Nd28cc2406ea8498698748fb7c23a3ca8 schema:name Springer Nature - SN SciGraph project
182 rdf:type schema:Organization
183 Ne57c19123ace455eb6464d83b9be9fd7 schema:affiliation https://www.grid.ac/institutes/grid.10388.32
184 schema:familyName Lüchters
185 schema:givenName Guido
186 rdf:type schema:Person
187 Ne6dd295e488c4cae828f76e87ca3de2e rdf:first N1a371eb44cd3468dba8c369235681d9d
188 rdf:rest N4ebfd5761583493eaa6fbddf862985a0
189 Neb99262a4bfa4446827bb6ee5b945d02 rdf:first N6757259e3ca64fb7830a4555f5d3939d
190 rdf:rest rdf:nil
191 Nedd8f6737d02449e9877658935a38306 rdf:first N2c4f44466e504e02a8b031c9cfd0e9b0
192 rdf:rest N8beb76f5a4864fb0b2ce2a9c670bb4de
193 Nf414f520a80641d4b0a0b6109e41db69 rdf:first Nb14466a8baf941b790f035c16477c841
194 rdf:rest Nac2101bc895442fbb72b5f709722dc77
195 Nfbfd3cb95b1c4a1ab7eebee2087ee94d schema:name Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
196 rdf:type schema:Organization
197 Nff4d1584a085465fa8380b1a7d81b254 schema:name nlm_unique_id
198 schema:value 9114774
199 rdf:type schema:PropertyValue
200 Nff5d62311ca74b939a2523dccdd36083 schema:name Department of Neonatology, University Hospital Bonn, Bonn, Germany
201 rdf:type schema:Organization
202 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
203 schema:name Medical and Health Sciences
204 rdf:type schema:DefinedTerm
205 anzsrc-for:1114 schema:inDefinedTermSet anzsrc-for:
206 schema:name Paediatrics and Reproductive Medicine
207 rdf:type schema:DefinedTerm
208 sg:journal.1289120 schema:issn 0938-7994
209 1432-1084
210 schema:name European Radiology
211 rdf:type schema:Periodical
212 sg:pub.10.1007/978-1-4899-4541-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705929
213 https://doi.org/10.1007/978-1-4899-4541-9
214 rdf:type schema:CreativeWork
215 sg:pub.10.1007/s00234-010-0700-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1004720190
216 https://doi.org/10.1007/s00234-010-0700-y
217 rdf:type schema:CreativeWork
218 sg:pub.10.1007/s00234-013-1242-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1014843578
219 https://doi.org/10.1007/s00234-013-1242-x
220 rdf:type schema:CreativeWork
221 sg:pub.10.1007/s00429-015-1032-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016374505
222 https://doi.org/10.1007/s00429-015-1032-9
223 rdf:type schema:CreativeWork
224 sg:pub.10.1007/s11065-010-9132-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1049892149
225 https://doi.org/10.1007/s11065-010-9132-z
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s12028-009-9324-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030203502
228 https://doi.org/10.1007/s12028-009-9324-7
229 rdf:type schema:CreativeWork
230 https://app.dimensions.ai/details/publication/pub.1076599371 schema:CreativeWork
231 https://app.dimensions.ai/details/publication/pub.1109705929 schema:CreativeWork
232 https://doi.org/10.1001/jama.2011.1331 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032625496
233 rdf:type schema:CreativeWork
234 https://doi.org/10.1002/hbm.23031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025930903
235 rdf:type schema:CreativeWork
236 https://doi.org/10.1016/j.earlhumdev.2005.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052474870
237 rdf:type schema:CreativeWork
238 https://doi.org/10.1016/j.earlhumdev.2013.08.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044852459
239 rdf:type schema:CreativeWork
240 https://doi.org/10.1016/j.ejpn.2014.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042643721
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1016/j.eplepsyres.2015.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007923238
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/j.jacr.2017.12.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100793475
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/j.neuroimage.2011.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036173681
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.nicl.2014.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011070090
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.nicl.2015.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004919043
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.pediatrneurol.2010.05.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009454523
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.pediatrneurol.2013.03.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025198280
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.siny.2006.07.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050377697
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.siny.2013.11.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053045259
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/j.spen.2009.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036629975
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/s0140-6736(08)60136-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020496702
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s0140-6736(12)60820-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025793568
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s0140-6736(14)60496-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015818418
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1016/s0140-6736(98)07130-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044428410
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1016/s1474-4422(09)70257-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024045795
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1017/s0012162299000201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054777557
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1053/j.semperi.2009.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008598765
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1055/s-0035-1552936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057339225
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1056/nejm200201173460302 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020802204
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1056/nejmoa010856 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042213276
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1093/brain/awm282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014565461
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1093/cercor/bhu133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059458446
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1097/gco.0000000000000156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028417930
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1097/wnr.0000000000000296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002942037
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1111/1471-0528.12281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037793042
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1111/dmcn.13380 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074200358
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1111/j.1469-8749.2012.04378.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022376764
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1111/j.2517-6161.1995.tb02031.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1110458929
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1111/jcpp.12358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026227803
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1136/jnnp.2005.075465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026715151
301 rdf:type schema:CreativeWork
302 https://doi.org/10.1177/0284185113497476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078770571
303 rdf:type schema:CreativeWork
304 https://doi.org/10.1177/0956797615596230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003836446
305 rdf:type schema:CreativeWork
306 https://doi.org/10.1542/peds.2015-3148 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026587654
307 rdf:type schema:CreativeWork
308 https://doi.org/10.3174/ajnr.a1399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031733662
309 rdf:type schema:CreativeWork
310 https://www.grid.ac/institutes/grid.10388.32 schema:alternateName University of Bonn
311 schema:name Center for Development Research, University of Bonn, Bonn, Germany
312 rdf:type schema:Organization
313 https://www.grid.ac/institutes/grid.15474.33 schema:alternateName Rechts der Isar Hospital
314 schema:name Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
315 Department of Psychiatry, Klinikum rechts der Isar, Munich, Germany
316 TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
317 rdf:type schema:Organization
318 https://www.grid.ac/institutes/grid.411088.4 schema:alternateName University Hospital Frankfurt
319 schema:name Department of Neonatology, University Hospital Bonn, Bonn, Germany
320 Functional Neuroimaging Group, Department of Radiology, University Hospital Bonn, Bonn, Germany
321 Institute for Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany
322 Section of Neuroradiology, Department of Radiology, University Hospital Bonn, Sigmund-Freud-Str. 25, 53105, Bonn, Germany
323 rdf:type schema:Organization
324 https://www.grid.ac/institutes/grid.6936.a schema:alternateName Technical University Munich
325 schema:name Department of Neuroradiology, Klinikum rechts der Isar, Munich, Germany
326 TUM-NIC Neuroimaging Center, Technische Universität München, Munich, Germany
327 rdf:type schema:Organization
328 https://www.grid.ac/institutes/grid.7372.1 schema:alternateName University of Warwick
329 schema:name Department of Psychology, University of Warwick, Coventry, UK
330 Warwick Medical School, University of Warwick, Coventry, UK
331 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...