Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Xiang Wang, Xingyu Zhao, Qiong Li, Wei Xia, Zhaohui Peng, Rui Zhang, Qingchu Li, Junming Jian, Wei Wang, Yuguo Tang, Shiyuan Liu, Xin Gao

ABSTRACT

OBJECTIVES: To evaluate the efficiency of radiomics model on CT images of intratumoral and peritumoral lung parenchyma for preoperative prediction of lymph node (LN) metastasis in clinical stage T1 peripheral lung adenocarcinoma patients. METHODS: Three hundred sixty-six peripheral lung adenocarcinoma patients with clinical stage T1 were evaluated using five CT scanners. For each patient, two volumes of interest (VOIs) on CT were defined as the gross tumor volume (GTV) and the peritumoral volume (PTV, 1.5 cm around the tumor). One thousand nine hundred forty-six radiomic features were obtained from each VOI, and then refined for reproducibility and redundancy. The refined features were investigated for usefulness in building radiomic signatures by mRMR feature ranking method and LASSO classifier. Multivariable logistic regression analysis was used to develop a radiomic nomogram incorporating the radiomic signature and clinical parameters. The prediction performance was evaluated on the validation cohort. RESULTS: The radiomic signatures using the features of GTV and PTV showed a good ability in predicting LN metastasis with an AUC of 0.829 (95% CI, 0.745-0.913) and 0.825 (95% CI, 0.733-0.918), respectively. By incorporating the features of GTV and PTV, the AUC of radiomic signature increased to 0.843 (95% CI, 0.770-0.916). The AUC of radiomic nomogram was 0.869 (95% CI, 0.800-0.938). CONCLUSIONS: Radiomic signatures of GTV and PTV both had a good prediction ability in the prediction of LN metastasis, and there is no significant difference of AUC between the two groups. The proposed nomogram can be conveniently used to facilitate the preoperative prediction of LN metastasis in T1 peripheral lung adenocarcinomas. KEY POINTS: • Radiomics from peritumoral lung parenchyma increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT. • A radiomic nomogram was developed and validated to predict LN metastasis. • Different scan parameters on CT showed that radiomics signature had good predictive performance. More... »

PAGES

1-10

References to SciGraph publications

  • 2018-06. Fully convolutional networks (FCNs)-based segmentation method for colorectal tumors on T2-weighted magnetic resonance images in AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE
  • 2017-12. A prediction model for lymph node metastases using pathologic features in patients intraoperatively diagnosed as stage I non-small cell lung cancer in BMC CANCER
  • 2017-10-04. Radiomics: the bridge between medical imaging and personalized medicine in NATURE REVIEWS CLINICAL ONCOLOGY
  • 2018-12. Augmented expression of Ki-67 is correlated with clinicopathological characteristics and prognosis for lung cancer patients: an up-dated systematic review and meta-analysis with 108 studies and 14,732 patients in RESPIRATORY RESEARCH
  • 2018-02. Prediction of disease-free survival by the PET/CT radiomic signature in non-small cell lung cancer patients undergoing surgery in EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • 2019-02. Radiomics signature: a biomarker for the preoperative discrimination of lung invasive adenocarcinoma manifesting as a ground-glass nodule in EUROPEAN RADIOLOGY
  • 2014-12. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach in NATURE COMMUNICATIONS
  • 2015-10. Machine Learning methods for Quantitative Radiomic Biomarkers in SCIENTIFIC REPORTS
  • 2017-10. Erratum to: Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastoma multiforme: Preliminary findings in EUROPEAN RADIOLOGY
  • 2018-04. Radiomics as a Quantitative Imaging Biomarker: Practical Considerations and the Current Standpoint in Neuro-oncologic Studies in NUCLEAR MEDICINE AND MOLECULAR IMAGING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s00330-019-06084-0

    DOI

    http://dx.doi.org/10.1007/s00330-019-06084-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112854531

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/30887209


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Cardiorespiratory Medicine and Haematology", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Medical and Health Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiang", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
              "id": "https://www.grid.ac/institutes/grid.458504.8", 
              "name": [
                "University of Science and Technology of China, Hefei, China", 
                "Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhao", 
            "givenName": "Xingyu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Qiong", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
              "id": "https://www.grid.ac/institutes/grid.458504.8", 
              "name": [
                "Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Xia", 
            "givenName": "Wei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Peng", 
            "givenName": "Zhaohui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
              "id": "https://www.grid.ac/institutes/grid.458504.8", 
              "name": [
                "Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Rui", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Qingchu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
              "id": "https://www.grid.ac/institutes/grid.458504.8", 
              "name": [
                "University of Science and Technology of China, Hefei, China", 
                "Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jian", 
            "givenName": "Junming", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Wei", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
              "id": "https://www.grid.ac/institutes/grid.458504.8", 
              "name": [
                "Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Yuguo", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Shiyuan", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Suzhou Institute of Biomedical Engineering and Technology", 
              "id": "https://www.grid.ac/institutes/grid.458504.8", 
              "name": [
                "Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gao", 
            "givenName": "Xin", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.3389/fonc.2015.00272", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000390901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtcvs.2006.02.063", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001309214"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejcts.2006.08.008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001725012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/jto.0000000000000674", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003582213"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.lungcan.2015.05.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005336498"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtcvs.2012.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009311786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtcvs.2012.07.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009311786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms5006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009469125", 
              "https://doi.org/10.1038/ncomms5006"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1056/nejmoa1102873", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020569420"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.123.2.463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023195865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1378/chest.123.2.463", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023195865"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2015151169", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023809829"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jtcvs.2013.11.056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027512147"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ejca.2011.11.036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032206774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/srep13087", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036587522", 
              "https://doi.org/10.1038/srep13087"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/ajco.12194", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038825369"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3389/fonc.2016.00071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040319901"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tig.2008.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043258673"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1513/pats.201107-042st", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045498380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1513/pats.201107-042st", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045498380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.ede.0000147512.81966.ba", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045686615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/01.ede.0000147512.81966.ba", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045686615"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.athoracsur.2013.03.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049187497"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2005.159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742820"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1200/jco.2015.65.9128", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064204513"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2307/2531595", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069977037"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077989947", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiol.2016152234", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1079292066"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/radiology.143.1.7063747", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1082130998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1082821043", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cllc.2017.01.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083410114"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/jmri.25661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083734158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2017.02.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083889273"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-017-3273-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084807698", 
              "https://doi.org/10.1186/s12885-017-3273-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12885-017-3273-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084807698", 
              "https://doi.org/10.1186/s12885-017-3273-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tranon.2017.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085411854"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1053/j.semtcvs.2017.05.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085707453"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4815-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085995432", 
              "https://doi.org/10.1007/s00330-017-4815-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-017-4815-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085995432", 
              "https://doi.org/10.1007/s00330-017-4815-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/cmar.s139253", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090366535"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00259-017-3837-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091910879", 
              "https://doi.org/10.1007/s00259-017-3837-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrclinonc.2017.141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092061102", 
              "https://doi.org/10.1038/nrclinonc.2017.141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1158/0008-5472.can-17-0339", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092475855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/ejcts/ezx418", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092538174"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2017.11.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099659881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.celrep.2017.11.052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099659881"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-017-0512-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100774871", 
              "https://doi.org/10.1007/s13139-017-0512-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-017-0512-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100774871", 
              "https://doi.org/10.1007/s13139-017-0512-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13139-017-0512-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100774871", 
              "https://doi.org/10.1007/s13139-017-0512-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mp.12820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101105639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mp.12820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101105639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mp.12820", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101105639"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101243936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101243936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cmpb.2018.02.015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101243936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0192859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101305300"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.athoracsur.2018.02.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101547610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1148/rg.2018170081", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101562710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mp.12901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103169940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/mp.12901", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103169940"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13246-018-0636-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103252419", 
              "https://doi.org/10.1007/s13246-018-0636-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105262359", 
              "https://doi.org/10.1007/s00330-018-5530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00330-018-5530-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105262359", 
              "https://doi.org/10.1007/s00330-018-5530-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2147/cmar.s147569", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1105691527"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s12931-018-0843-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106141250", 
              "https://doi.org/10.1186/s12931-018-0843-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-18", 
        "datePublishedReg": "2019-03-18", 
        "description": "OBJECTIVES: To evaluate the efficiency of radiomics model on CT images of intratumoral and peritumoral lung parenchyma for preoperative prediction of lymph node (LN) metastasis in clinical stage T1 peripheral lung adenocarcinoma patients.\nMETHODS: Three hundred sixty-six peripheral lung adenocarcinoma patients with clinical stage T1 were evaluated using five CT scanners. For each patient, two volumes of interest (VOIs) on CT were defined as the gross tumor volume (GTV) and the peritumoral volume (PTV, 1.5\u00a0cm around the tumor). One thousand nine hundred forty-six radiomic features were obtained from each VOI, and then refined for reproducibility and redundancy. The refined features were investigated for usefulness in building radiomic signatures by mRMR feature ranking method and LASSO classifier. Multivariable logistic regression analysis was used to develop a radiomic nomogram incorporating the radiomic signature and clinical parameters. The prediction performance was evaluated on the validation cohort.\nRESULTS: The radiomic signatures using the features of GTV and PTV showed a good ability in predicting LN metastasis with an AUC of 0.829 (95% CI, 0.745-0.913) and 0.825 (95% CI, 0.733-0.918), respectively. By incorporating the features of GTV and PTV, the AUC of radiomic signature increased to 0.843 (95% CI, 0.770-0.916). The AUC of radiomic nomogram was 0.869 (95% CI, 0.800-0.938).\nCONCLUSIONS: Radiomic signatures of GTV and PTV both had a good prediction ability in the prediction of LN metastasis, and there is no significant difference of AUC between the two groups. The proposed nomogram can be conveniently used to facilitate the preoperative prediction of LN metastasis in T1 peripheral lung adenocarcinomas.\nKEY POINTS: \u2022 Radiomics from peritumoral lung parenchyma increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT. \u2022 A radiomic nomogram was developed and validated to predict LN metastasis. \u2022 Different scan parameters on CT showed that radiomics signature had good predictive performance.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s00330-019-06084-0", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1289120", 
            "issn": [
              "0938-7994", 
              "1432-1084"
            ], 
            "name": "European Radiology", 
            "type": "Periodical"
          }
        ], 
        "name": "Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?", 
        "pagination": "1-10", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "842c194053afb28cd2999232ec2697ea1a75a059cc8fa92b9a351ca8f74647db"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "30887209"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "9114774"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s00330-019-06084-0"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112854531"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s00330-019-06084-0", 
          "https://app.dimensions.ai/details/publication/pub.1112854531"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_53984_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs00330-019-06084-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06084-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06084-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06084-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06084-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    299 TRIPLES      21 PREDICATES      76 URIs      18 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s00330-019-06084-0 schema:about anzsrc-for:11
    2 anzsrc-for:1102
    3 schema:author Nf7b5aeb9f79a4edb94759cd77d2e5470
    4 schema:citation sg:pub.10.1007/s00259-017-3837-7
    5 sg:pub.10.1007/s00330-017-4815-y
    6 sg:pub.10.1007/s00330-018-5530-z
    7 sg:pub.10.1007/s13139-017-0512-7
    8 sg:pub.10.1007/s13246-018-0636-9
    9 sg:pub.10.1038/ncomms5006
    10 sg:pub.10.1038/nrclinonc.2017.141
    11 sg:pub.10.1038/srep13087
    12 sg:pub.10.1186/s12885-017-3273-x
    13 sg:pub.10.1186/s12931-018-0843-7
    14 https://app.dimensions.ai/details/publication/pub.1077989947
    15 https://app.dimensions.ai/details/publication/pub.1082821043
    16 https://doi.org/10.1002/jmri.25661
    17 https://doi.org/10.1002/mp.12820
    18 https://doi.org/10.1002/mp.12901
    19 https://doi.org/10.1016/j.athoracsur.2013.03.050
    20 https://doi.org/10.1016/j.athoracsur.2018.02.026
    21 https://doi.org/10.1016/j.celrep.2017.11.052
    22 https://doi.org/10.1016/j.cllc.2017.01.011
    23 https://doi.org/10.1016/j.cmpb.2017.02.013
    24 https://doi.org/10.1016/j.cmpb.2018.02.015
    25 https://doi.org/10.1016/j.ejca.2011.11.036
    26 https://doi.org/10.1016/j.ejcts.2006.08.008
    27 https://doi.org/10.1016/j.jtcvs.2006.02.063
    28 https://doi.org/10.1016/j.jtcvs.2012.07.012
    29 https://doi.org/10.1016/j.jtcvs.2013.11.056
    30 https://doi.org/10.1016/j.lungcan.2015.05.010
    31 https://doi.org/10.1016/j.tig.2008.10.012
    32 https://doi.org/10.1016/j.tranon.2017.02.002
    33 https://doi.org/10.1053/j.semtcvs.2017.05.006
    34 https://doi.org/10.1056/nejmoa1102873
    35 https://doi.org/10.1093/ejcts/ezx418
    36 https://doi.org/10.1097/01.ede.0000147512.81966.ba
    37 https://doi.org/10.1097/jto.0000000000000674
    38 https://doi.org/10.1109/tpami.2005.159
    39 https://doi.org/10.1111/ajco.12194
    40 https://doi.org/10.1148/radiol.2015151169
    41 https://doi.org/10.1148/radiol.2016152234
    42 https://doi.org/10.1148/radiology.143.1.7063747
    43 https://doi.org/10.1148/rg.2018170081
    44 https://doi.org/10.1158/0008-5472.can-17-0339
    45 https://doi.org/10.1200/jco.2015.65.9128
    46 https://doi.org/10.1371/journal.pone.0192859
    47 https://doi.org/10.1378/chest.123.2.463
    48 https://doi.org/10.1513/pats.201107-042st
    49 https://doi.org/10.2147/cmar.s139253
    50 https://doi.org/10.2147/cmar.s147569
    51 https://doi.org/10.2307/2531595
    52 https://doi.org/10.3389/fonc.2015.00272
    53 https://doi.org/10.3389/fonc.2016.00071
    54 schema:datePublished 2019-03-18
    55 schema:datePublishedReg 2019-03-18
    56 schema:description OBJECTIVES: To evaluate the efficiency of radiomics model on CT images of intratumoral and peritumoral lung parenchyma for preoperative prediction of lymph node (LN) metastasis in clinical stage T1 peripheral lung adenocarcinoma patients. METHODS: Three hundred sixty-six peripheral lung adenocarcinoma patients with clinical stage T1 were evaluated using five CT scanners. For each patient, two volumes of interest (VOIs) on CT were defined as the gross tumor volume (GTV) and the peritumoral volume (PTV, 1.5 cm around the tumor). One thousand nine hundred forty-six radiomic features were obtained from each VOI, and then refined for reproducibility and redundancy. The refined features were investigated for usefulness in building radiomic signatures by mRMR feature ranking method and LASSO classifier. Multivariable logistic regression analysis was used to develop a radiomic nomogram incorporating the radiomic signature and clinical parameters. The prediction performance was evaluated on the validation cohort. RESULTS: The radiomic signatures using the features of GTV and PTV showed a good ability in predicting LN metastasis with an AUC of 0.829 (95% CI, 0.745-0.913) and 0.825 (95% CI, 0.733-0.918), respectively. By incorporating the features of GTV and PTV, the AUC of radiomic signature increased to 0.843 (95% CI, 0.770-0.916). The AUC of radiomic nomogram was 0.869 (95% CI, 0.800-0.938). CONCLUSIONS: Radiomic signatures of GTV and PTV both had a good prediction ability in the prediction of LN metastasis, and there is no significant difference of AUC between the two groups. The proposed nomogram can be conveniently used to facilitate the preoperative prediction of LN metastasis in T1 peripheral lung adenocarcinomas. KEY POINTS: • Radiomics from peritumoral lung parenchyma increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT. • A radiomic nomogram was developed and validated to predict LN metastasis. • Different scan parameters on CT showed that radiomics signature had good predictive performance.
    57 schema:genre research_article
    58 schema:inLanguage en
    59 schema:isAccessibleForFree false
    60 schema:isPartOf sg:journal.1289120
    61 schema:name Can peritumoral radiomics increase the efficiency of the prediction for lymph node metastasis in clinical stage T1 lung adenocarcinoma on CT?
    62 schema:pagination 1-10
    63 schema:productId N17adabb94c6044aa9562ade98cce41d7
    64 N4c7c2d5158af403c962590aadb0ccdf4
    65 N501ea410066b4b2592cddd9eb8bb5991
    66 N750b275608bd4e6eb9b9da52e0eadcc4
    67 Nbfb81170f89d49c38598767a1e33ddb4
    68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112854531
    69 https://doi.org/10.1007/s00330-019-06084-0
    70 schema:sdDatePublished 2019-04-11T12:12
    71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    72 schema:sdPublisher N4b1e84c9377c4b9f9fd927e2703d9fd8
    73 schema:url https://link.springer.com/10.1007%2Fs00330-019-06084-0
    74 sgo:license sg:explorer/license/
    75 sgo:sdDataset articles
    76 rdf:type schema:ScholarlyArticle
    77 N078bcb9615334d60952f36c729a7eef1 rdf:first N11913f9c4ab44dffbd855c19e2bcca48
    78 rdf:rest Nf2b9c9abb5624084a7f74cf7e16832e5
    79 N11913f9c4ab44dffbd855c19e2bcca48 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
    80 schema:familyName Xia
    81 schema:givenName Wei
    82 rdf:type schema:Person
    83 N17adabb94c6044aa9562ade98cce41d7 schema:name pubmed_id
    84 schema:value 30887209
    85 rdf:type schema:PropertyValue
    86 N2a96b0ab8a4a400cbca68417b5795e27 rdf:first Nd2dd4a8c8398489cbd940ac51a8689b3
    87 rdf:rest N9567d8eb179a4fec92d2b67f65331cb1
    88 N30293569365f4a53835c79a61373f59b rdf:first N5a4c6abc0a4d4bfcaabbc1d7b2636874
    89 rdf:rest Na82861bd8eec46f4b24ff5f9bb728401
    90 N30b72d7518c9445daeb98945e1f57fcc rdf:first N913f299e783f40e7bc38cf551b4a5f34
    91 rdf:rest Ne70038c9aa414d2095c504341044ad52
    92 N32cf8c44752b4923bef60845f83b22fa schema:name Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
    93 rdf:type schema:Organization
    94 N37127d3ff87f40f29a45d81406822de7 schema:name Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
    95 rdf:type schema:Organization
    96 N3907f02455244f5eaabe0bd0c727ad1a rdf:first N7ce4a2b4c830487a90ac8b407fe19471
    97 rdf:rest Nbf832cf92ef14971ab56fef1c239fd76
    98 N4b1e84c9377c4b9f9fd927e2703d9fd8 schema:name Springer Nature - SN SciGraph project
    99 rdf:type schema:Organization
    100 N4bb6c11e573a49a5bf9b0758e10e05ee schema:affiliation N37127d3ff87f40f29a45d81406822de7
    101 schema:familyName Peng
    102 schema:givenName Zhaohui
    103 rdf:type schema:Person
    104 N4c7c2d5158af403c962590aadb0ccdf4 schema:name doi
    105 schema:value 10.1007/s00330-019-06084-0
    106 rdf:type schema:PropertyValue
    107 N4f591a209847460abca3133e89c0eba9 schema:name Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
    108 rdf:type schema:Organization
    109 N501ea410066b4b2592cddd9eb8bb5991 schema:name readcube_id
    110 schema:value 842c194053afb28cd2999232ec2697ea1a75a059cc8fa92b9a351ca8f74647db
    111 rdf:type schema:PropertyValue
    112 N5a43228867594615ad73ac7a4983e421 schema:affiliation N9f7bf77ed31843a98d2747d57268464d
    113 schema:familyName Li
    114 schema:givenName Qingchu
    115 rdf:type schema:Person
    116 N5a4c6abc0a4d4bfcaabbc1d7b2636874 schema:affiliation N32cf8c44752b4923bef60845f83b22fa
    117 schema:familyName Wang
    118 schema:givenName Wei
    119 rdf:type schema:Person
    120 N750b275608bd4e6eb9b9da52e0eadcc4 schema:name dimensions_id
    121 schema:value pub.1112854531
    122 rdf:type schema:PropertyValue
    123 N763b872dfbc840e284b85835f0bdbb3e rdf:first Ne461f528ebac45ffbe0d0664fcecf3a4
    124 rdf:rest N30293569365f4a53835c79a61373f59b
    125 N7ce4a2b4c830487a90ac8b407fe19471 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
    126 schema:familyName Zhao
    127 schema:givenName Xingyu
    128 rdf:type schema:Person
    129 N913f299e783f40e7bc38cf551b4a5f34 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
    130 schema:familyName Zhang
    131 schema:givenName Rui
    132 rdf:type schema:Person
    133 N9567d8eb179a4fec92d2b67f65331cb1 rdf:first N9b469a95bfc142b5852f1905ef1992cd
    134 rdf:rest rdf:nil
    135 N9b469a95bfc142b5852f1905ef1992cd schema:affiliation https://www.grid.ac/institutes/grid.458504.8
    136 schema:familyName Gao
    137 schema:givenName Xin
    138 rdf:type schema:Person
    139 N9f7bf77ed31843a98d2747d57268464d schema:name Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
    140 rdf:type schema:Organization
    141 Na2799535df304e3da81e0c2fe89a844d schema:affiliation Ndab7eadf0aa849159382dbfb9f6ae41a
    142 schema:familyName Wang
    143 schema:givenName Xiang
    144 rdf:type schema:Person
    145 Na82861bd8eec46f4b24ff5f9bb728401 rdf:first Ndb488c4c78ed4fccbe084ae97eac2df9
    146 rdf:rest N2a96b0ab8a4a400cbca68417b5795e27
    147 Nbf1b853830af4bdeb6a940fc471002ac schema:affiliation N4f591a209847460abca3133e89c0eba9
    148 schema:familyName Li
    149 schema:givenName Qiong
    150 rdf:type schema:Person
    151 Nbf832cf92ef14971ab56fef1c239fd76 rdf:first Nbf1b853830af4bdeb6a940fc471002ac
    152 rdf:rest N078bcb9615334d60952f36c729a7eef1
    153 Nbfb81170f89d49c38598767a1e33ddb4 schema:name nlm_unique_id
    154 schema:value 9114774
    155 rdf:type schema:PropertyValue
    156 Nd2dd4a8c8398489cbd940ac51a8689b3 schema:affiliation Necc7f03879564f05870ed02c61bee60c
    157 schema:familyName Liu
    158 schema:givenName Shiyuan
    159 rdf:type schema:Person
    160 Ndab7eadf0aa849159382dbfb9f6ae41a schema:name Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
    161 rdf:type schema:Organization
    162 Ndb488c4c78ed4fccbe084ae97eac2df9 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
    163 schema:familyName Tang
    164 schema:givenName Yuguo
    165 rdf:type schema:Person
    166 Ne461f528ebac45ffbe0d0664fcecf3a4 schema:affiliation https://www.grid.ac/institutes/grid.458504.8
    167 schema:familyName Jian
    168 schema:givenName Junming
    169 rdf:type schema:Person
    170 Ne70038c9aa414d2095c504341044ad52 rdf:first N5a43228867594615ad73ac7a4983e421
    171 rdf:rest N763b872dfbc840e284b85835f0bdbb3e
    172 Necc7f03879564f05870ed02c61bee60c schema:name Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415 Fengyang Road, 200003, Shanghai, China
    173 rdf:type schema:Organization
    174 Nf2b9c9abb5624084a7f74cf7e16832e5 rdf:first N4bb6c11e573a49a5bf9b0758e10e05ee
    175 rdf:rest N30b72d7518c9445daeb98945e1f57fcc
    176 Nf7b5aeb9f79a4edb94759cd77d2e5470 rdf:first Na2799535df304e3da81e0c2fe89a844d
    177 rdf:rest N3907f02455244f5eaabe0bd0c727ad1a
    178 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Medical and Health Sciences
    180 rdf:type schema:DefinedTerm
    181 anzsrc-for:1102 schema:inDefinedTermSet anzsrc-for:
    182 schema:name Cardiorespiratory Medicine and Haematology
    183 rdf:type schema:DefinedTerm
    184 sg:journal.1289120 schema:issn 0938-7994
    185 1432-1084
    186 schema:name European Radiology
    187 rdf:type schema:Periodical
    188 sg:pub.10.1007/s00259-017-3837-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091910879
    189 https://doi.org/10.1007/s00259-017-3837-7
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/s00330-017-4815-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1085995432
    192 https://doi.org/10.1007/s00330-017-4815-y
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00330-018-5530-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1105262359
    195 https://doi.org/10.1007/s00330-018-5530-z
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s13139-017-0512-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100774871
    198 https://doi.org/10.1007/s13139-017-0512-7
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s13246-018-0636-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103252419
    201 https://doi.org/10.1007/s13246-018-0636-9
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
    204 https://doi.org/10.1038/ncomms5006
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1038/nrclinonc.2017.141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092061102
    207 https://doi.org/10.1038/nrclinonc.2017.141
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/srep13087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036587522
    210 https://doi.org/10.1038/srep13087
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1186/s12885-017-3273-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084807698
    213 https://doi.org/10.1186/s12885-017-3273-x
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1186/s12931-018-0843-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106141250
    216 https://doi.org/10.1186/s12931-018-0843-7
    217 rdf:type schema:CreativeWork
    218 https://app.dimensions.ai/details/publication/pub.1077989947 schema:CreativeWork
    219 https://app.dimensions.ai/details/publication/pub.1082821043 schema:CreativeWork
    220 https://doi.org/10.1002/jmri.25661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083734158
    221 rdf:type schema:CreativeWork
    222 https://doi.org/10.1002/mp.12820 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101105639
    223 rdf:type schema:CreativeWork
    224 https://doi.org/10.1002/mp.12901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103169940
    225 rdf:type schema:CreativeWork
    226 https://doi.org/10.1016/j.athoracsur.2013.03.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049187497
    227 rdf:type schema:CreativeWork
    228 https://doi.org/10.1016/j.athoracsur.2018.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101547610
    229 rdf:type schema:CreativeWork
    230 https://doi.org/10.1016/j.celrep.2017.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099659881
    231 rdf:type schema:CreativeWork
    232 https://doi.org/10.1016/j.cllc.2017.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083410114
    233 rdf:type schema:CreativeWork
    234 https://doi.org/10.1016/j.cmpb.2017.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083889273
    235 rdf:type schema:CreativeWork
    236 https://doi.org/10.1016/j.cmpb.2018.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101243936
    237 rdf:type schema:CreativeWork
    238 https://doi.org/10.1016/j.ejca.2011.11.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032206774
    239 rdf:type schema:CreativeWork
    240 https://doi.org/10.1016/j.ejcts.2006.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001725012
    241 rdf:type schema:CreativeWork
    242 https://doi.org/10.1016/j.jtcvs.2006.02.063 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001309214
    243 rdf:type schema:CreativeWork
    244 https://doi.org/10.1016/j.jtcvs.2012.07.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009311786
    245 rdf:type schema:CreativeWork
    246 https://doi.org/10.1016/j.jtcvs.2013.11.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027512147
    247 rdf:type schema:CreativeWork
    248 https://doi.org/10.1016/j.lungcan.2015.05.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005336498
    249 rdf:type schema:CreativeWork
    250 https://doi.org/10.1016/j.tig.2008.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043258673
    251 rdf:type schema:CreativeWork
    252 https://doi.org/10.1016/j.tranon.2017.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085411854
    253 rdf:type schema:CreativeWork
    254 https://doi.org/10.1053/j.semtcvs.2017.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085707453
    255 rdf:type schema:CreativeWork
    256 https://doi.org/10.1056/nejmoa1102873 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020569420
    257 rdf:type schema:CreativeWork
    258 https://doi.org/10.1093/ejcts/ezx418 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092538174
    259 rdf:type schema:CreativeWork
    260 https://doi.org/10.1097/01.ede.0000147512.81966.ba schema:sameAs https://app.dimensions.ai/details/publication/pub.1045686615
    261 rdf:type schema:CreativeWork
    262 https://doi.org/10.1097/jto.0000000000000674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003582213
    263 rdf:type schema:CreativeWork
    264 https://doi.org/10.1109/tpami.2005.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742820
    265 rdf:type schema:CreativeWork
    266 https://doi.org/10.1111/ajco.12194 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038825369
    267 rdf:type schema:CreativeWork
    268 https://doi.org/10.1148/radiol.2015151169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809829
    269 rdf:type schema:CreativeWork
    270 https://doi.org/10.1148/radiol.2016152234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079292066
    271 rdf:type schema:CreativeWork
    272 https://doi.org/10.1148/radiology.143.1.7063747 schema:sameAs https://app.dimensions.ai/details/publication/pub.1082130998
    273 rdf:type schema:CreativeWork
    274 https://doi.org/10.1148/rg.2018170081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101562710
    275 rdf:type schema:CreativeWork
    276 https://doi.org/10.1158/0008-5472.can-17-0339 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092475855
    277 rdf:type schema:CreativeWork
    278 https://doi.org/10.1200/jco.2015.65.9128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204513
    279 rdf:type schema:CreativeWork
    280 https://doi.org/10.1371/journal.pone.0192859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101305300
    281 rdf:type schema:CreativeWork
    282 https://doi.org/10.1378/chest.123.2.463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023195865
    283 rdf:type schema:CreativeWork
    284 https://doi.org/10.1513/pats.201107-042st schema:sameAs https://app.dimensions.ai/details/publication/pub.1045498380
    285 rdf:type schema:CreativeWork
    286 https://doi.org/10.2147/cmar.s139253 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090366535
    287 rdf:type schema:CreativeWork
    288 https://doi.org/10.2147/cmar.s147569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105691527
    289 rdf:type schema:CreativeWork
    290 https://doi.org/10.2307/2531595 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069977037
    291 rdf:type schema:CreativeWork
    292 https://doi.org/10.3389/fonc.2015.00272 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000390901
    293 rdf:type schema:CreativeWork
    294 https://doi.org/10.3389/fonc.2016.00071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040319901
    295 rdf:type schema:CreativeWork
    296 https://www.grid.ac/institutes/grid.458504.8 schema:alternateName Suzhou Institute of Biomedical Engineering and Technology
    297 schema:name Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
    298 University of Science and Technology of China, Hefei, China
    299 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...