Adaptive statistical iterative reconstruction (ASIR) affects CT radiomics quantification in primary colorectal cancer View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Davide Prezzi, Katarzyna Owczarczyk, Paul Bassett, Muhammad Siddique, David J. Breen, Gary J. R. Cook, Vicky Goh

ABSTRACT

OBJECTIVES: To investigate whether adaptive statistical iterative reconstruction (ASIR), a hybrid iterative CT image reconstruction algorithm, affects radiomics feature quantification in primary colorectal cancer compared to filtered back projection. Additionally, to establish whether radiomics from single-slice analysis undergo greater change than those from multi-slice analysis. METHODS: Following review board approval, contrast-enhanced CT studies from 32 prospective primary colorectal cancer patients were reconstructed with 20% ASIR level increments, from 0 to 100%. Radiomics analysis was applied to single-slice and multi-slice regions of interest outlining the tumour: 70 features, including statistical (first-, second- and high-order) and fractal radiomics, were generated per dataset. The effect of ASIR was calculated by means of multilevel linear regression. RESULTS: Twenty-eight CT datasets were suitable for analysis. Incremental ASIR levels determined a significant change (p < 0.001) in most statistical radiomics features, best described by a simple linear relationship. First-order statistical features, including mean, standard deviation, skewness, kurtosis, energy and entropy, underwent a relatively small change in both single-slice and multi-slice analysis (median standardised effect size B = 0.08). Second-order statistical features, including grey-level co-occurrence and difference matrices, underwent a greater change in single-slice analysis (median B = 0.36) than in multi-slice analysis (median B = 0.13). Fractal features underwent a significant change only in single-slice analysis (median B = 0.49). CONCLUSIONS: Incremental levels of ASIR affect significantly CT radiomics quantification in primary colorectal cancer. Second-order statistical and fractal features derived from single-slice analysis undergo greater change than those from multi-slice analysis. KEY POINTS: • Incremental levels of ASIR determine a significant change in most statistical (first-, second- and high-order) CT radiomics features measured in primary colorectal cancer, best described by a linear relationship. • First-order statistical features undergo a small change, both from single-slice and multi-slice radiomics analyses. • Most second-order statistical features undergo a greater change in single-slice analysis than in multi-slice analysis. Fractal features are only affected in single-slice analysis. More... »

PAGES

1-9

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06073-3

DOI

http://dx.doi.org/10.1007/s00330-019-06073-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112849947

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30887205


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, King\u2019s Health Partners, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK", 
            "Department of Radiology, Guy\u2019s and St Thomas\u2019 NHS Foundation Trust, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prezzi", 
        "givenName": "Davide", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, King\u2019s Health Partners, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK", 
            "Department of Clinical Oncology, Guy\u2019s and St Thomas\u2019 NHS Foundation Trust, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Owczarczyk", 
        "givenName": "Katarzyna", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Statsconsultancy Ltd., 40 Longwood Lane, HP7 9EN, Amersham, Bucks, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bassett", 
        "givenName": "Paul", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "King's College London", 
          "id": "https://www.grid.ac/institutes/grid.13097.3c", 
          "name": [
            "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, King\u2019s Health Partners, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siddique", 
        "givenName": "Muhammad", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University Hospital Southampton NHS Foundation Trust", 
          "id": "https://www.grid.ac/institutes/grid.430506.4", 
          "name": [
            "University Hospital Southampton NHS Foundation Trust, Tremona Road, SO16 6YD, Southampton, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Breen", 
        "givenName": "David J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, King\u2019s Health Partners, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK", 
            "King\u2019s College London & Guy\u2019s and St Thomas\u2019 PET Centre, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cook", 
        "givenName": "Gary J. R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "St Thomas' Hospital", 
          "id": "https://www.grid.ac/institutes/grid.425213.3", 
          "name": [
            "School of Biomedical Engineering and Imaging Sciences, King\u2019s College London, King\u2019s Health Partners, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK", 
            "Department of Radiology, Guy\u2019s and St Thomas\u2019 NHS Foundation Trust, Lambeth Wing, St Thomas\u2019 Hospital, SE1 7EH, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Goh", 
        "givenName": "Vicky", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1097/rli.0000000000000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rli.0000000000000116", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001262488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4663-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003341036", 
          "https://doi.org/10.1007/s00330-016-4663-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-016-4663-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003341036", 
          "https://doi.org/10.1007/s00330-016-4663-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004503812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.radonc.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004503812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015132766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006750918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep23428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009204094", 
          "https://doi.org/10.1038/srep23428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009469125", 
          "https://doi.org/10.1038/ncomms5006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtho.2016.11.2230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009681883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/codi.13496", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010575407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.09090094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011314087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1118/1.4954845", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012565282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015150892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018351031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.14130569", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019115367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2016.08.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022961172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2015151169", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023809829"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep33860", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028821676", 
          "https://doi.org/10.1038/srep33860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31824e639e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028908853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rct.0b013e31824e639e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028908853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep34921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032506380", 
          "https://doi.org/10.1038/srep34921"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0166550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037687667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00330-015-4043-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039977346", 
          "https://doi.org/10.1007/s00330-015-4043-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0000000000000164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040828078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/rti.0000000000000164", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040828078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12120254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042743379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1593/tlo.13865", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043740661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejrad.2012.10.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045809942"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.12112707", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053507793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tbme.2015.2485779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061530028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2015.65.9128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064204513"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.2397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.09.2953", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.10.4288", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069300820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2214/ajr.11.7421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069302000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mp.12123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074215033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016152110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079265801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016152234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079292066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1148/radiol.2016160261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1079334888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3174/ajnr.a5139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084429237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41598-017-01524-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085208556", 
          "https://doi.org/10.1038/s41598-017-01524-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-017-2835-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085386554", 
          "https://doi.org/10.1007/s00384-017-2835-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00384-017-2835-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085386554", 
          "https://doi.org/10.1007/s00384-017-2835-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7554/elife.23421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090852404"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "OBJECTIVES: To investigate whether adaptive statistical iterative reconstruction (ASIR), a hybrid iterative CT image reconstruction algorithm, affects radiomics feature quantification in primary colorectal cancer compared to filtered back projection. Additionally, to establish whether radiomics from single-slice analysis undergo greater change than those from multi-slice analysis.\nMETHODS: Following review board approval, contrast-enhanced CT studies from 32 prospective primary colorectal cancer patients were reconstructed with 20% ASIR level increments, from 0 to 100%. Radiomics analysis was applied to single-slice and multi-slice regions of interest outlining the tumour: 70 features, including statistical (first-, second- and high-order) and fractal radiomics, were generated per dataset. The effect of ASIR was calculated by means of multilevel linear regression.\nRESULTS: Twenty-eight CT datasets were suitable for analysis. Incremental ASIR levels determined a significant change (p\u2009<\u20090.001) in most statistical radiomics features, best described by a simple linear relationship. First-order statistical features, including mean, standard deviation, skewness, kurtosis, energy and entropy, underwent a relatively small change in both single-slice and multi-slice analysis (median standardised effect size B\u2009=\u20090.08). Second-order statistical features, including grey-level co-occurrence and difference matrices, underwent a greater change in single-slice analysis (median B\u2009=\u20090.36) than in multi-slice analysis (median B\u2009=\u20090.13). Fractal features underwent a significant change only in single-slice analysis (median B\u2009=\u20090.49).\nCONCLUSIONS: Incremental levels of ASIR affect significantly CT radiomics quantification in primary colorectal cancer. Second-order statistical and fractal features derived from single-slice analysis undergo greater change than those from multi-slice analysis.\nKEY POINTS: \u2022 Incremental levels of ASIR determine a significant change in most statistical (first-, second- and high-order) CT radiomics features measured in primary colorectal cancer, best described by a linear relationship. \u2022 First-order statistical features undergo a small change, both from single-slice and multi-slice radiomics analyses. \u2022 Most second-order statistical features undergo a greater change in single-slice analysis than in multi-slice analysis. Fractal features are only affected in single-slice analysis.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-019-06073-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Adaptive statistical iterative reconstruction (ASIR) affects CT radiomics quantification in primary colorectal cancer", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0e1676d05d88e1c540eb7f52cabcd8b589acd51962aaf1bfead9ca632d4414e3"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30887205"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06073-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112849947"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06073-3", 
      "https://app.dimensions.ai/details/publication/pub.1112849947"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:14", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54003_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-019-06073-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06073-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06073-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06073-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06073-3'


 

This table displays all metadata directly associated to this object as RDF triples.

231 TRIPLES      21 PREDICATES      64 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06073-3 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N9acdb036ec0b497aa25ad2ee95b8b098
4 schema:citation sg:pub.10.1007/s00330-015-4043-2
5 sg:pub.10.1007/s00330-016-4663-1
6 sg:pub.10.1007/s00384-017-2835-3
7 sg:pub.10.1038/ncomms5006
8 sg:pub.10.1038/s41598-017-01524-7
9 sg:pub.10.1038/srep23428
10 sg:pub.10.1038/srep33860
11 sg:pub.10.1038/srep34921
12 https://doi.org/10.1002/mp.12123
13 https://doi.org/10.1016/j.ejrad.2012.10.023
14 https://doi.org/10.1016/j.ejrad.2016.08.014
15 https://doi.org/10.1016/j.jtho.2016.11.2230
16 https://doi.org/10.1016/j.radonc.2015.02.015
17 https://doi.org/10.1097/rct.0b013e31824e639e
18 https://doi.org/10.1097/rli.0000000000000116
19 https://doi.org/10.1097/rti.0000000000000164
20 https://doi.org/10.1109/tbme.2015.2485779
21 https://doi.org/10.1111/codi.13496
22 https://doi.org/10.1118/1.4954845
23 https://doi.org/10.1148/radiol.09090094
24 https://doi.org/10.1148/radiol.12112707
25 https://doi.org/10.1148/radiol.12120254
26 https://doi.org/10.1148/radiol.14130569
27 https://doi.org/10.1148/radiol.2015132766
28 https://doi.org/10.1148/radiol.2015150892
29 https://doi.org/10.1148/radiol.2015151169
30 https://doi.org/10.1148/radiol.2016152110
31 https://doi.org/10.1148/radiol.2016152234
32 https://doi.org/10.1148/radiol.2016160261
33 https://doi.org/10.1200/jco.2015.65.9128
34 https://doi.org/10.1371/journal.pone.0166550
35 https://doi.org/10.1593/tlo.13865
36 https://doi.org/10.2214/ajr.09.2397
37 https://doi.org/10.2214/ajr.09.2953
38 https://doi.org/10.2214/ajr.10.4288
39 https://doi.org/10.2214/ajr.11.7421
40 https://doi.org/10.3174/ajnr.a5139
41 https://doi.org/10.7554/elife.23421
42 schema:datePublished 2019-03-18
43 schema:datePublishedReg 2019-03-18
44 schema:description OBJECTIVES: To investigate whether adaptive statistical iterative reconstruction (ASIR), a hybrid iterative CT image reconstruction algorithm, affects radiomics feature quantification in primary colorectal cancer compared to filtered back projection. Additionally, to establish whether radiomics from single-slice analysis undergo greater change than those from multi-slice analysis. METHODS: Following review board approval, contrast-enhanced CT studies from 32 prospective primary colorectal cancer patients were reconstructed with 20% ASIR level increments, from 0 to 100%. Radiomics analysis was applied to single-slice and multi-slice regions of interest outlining the tumour: 70 features, including statistical (first-, second- and high-order) and fractal radiomics, were generated per dataset. The effect of ASIR was calculated by means of multilevel linear regression. RESULTS: Twenty-eight CT datasets were suitable for analysis. Incremental ASIR levels determined a significant change (p < 0.001) in most statistical radiomics features, best described by a simple linear relationship. First-order statistical features, including mean, standard deviation, skewness, kurtosis, energy and entropy, underwent a relatively small change in both single-slice and multi-slice analysis (median standardised effect size B = 0.08). Second-order statistical features, including grey-level co-occurrence and difference matrices, underwent a greater change in single-slice analysis (median B = 0.36) than in multi-slice analysis (median B = 0.13). Fractal features underwent a significant change only in single-slice analysis (median B = 0.49). CONCLUSIONS: Incremental levels of ASIR affect significantly CT radiomics quantification in primary colorectal cancer. Second-order statistical and fractal features derived from single-slice analysis undergo greater change than those from multi-slice analysis. KEY POINTS: • Incremental levels of ASIR determine a significant change in most statistical (first-, second- and high-order) CT radiomics features measured in primary colorectal cancer, best described by a linear relationship. • First-order statistical features undergo a small change, both from single-slice and multi-slice radiomics analyses. • Most second-order statistical features undergo a greater change in single-slice analysis than in multi-slice analysis. Fractal features are only affected in single-slice analysis.
45 schema:genre research_article
46 schema:inLanguage en
47 schema:isAccessibleForFree false
48 schema:isPartOf sg:journal.1289120
49 schema:name Adaptive statistical iterative reconstruction (ASIR) affects CT radiomics quantification in primary colorectal cancer
50 schema:pagination 1-9
51 schema:productId N1ad42674259d40aba19f64c0a1222af0
52 N7cf2a939872942a5abab3d27e369a82c
53 N9c8eb436502f486aa058c52614a387f4
54 Nb0b99512ee57420c8e3ecf90fe8e6bc1
55 Nc8e2ce5036e3439aa84d2dbeae4846ad
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112849947
57 https://doi.org/10.1007/s00330-019-06073-3
58 schema:sdDatePublished 2019-04-11T12:14
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher Na49c7288bb19402aad84957a2d578591
61 schema:url https://link.springer.com/10.1007%2Fs00330-019-06073-3
62 sgo:license sg:explorer/license/
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
65 N10af1ee403f4481c940776e12ebe932f schema:affiliation https://www.grid.ac/institutes/grid.425213.3
66 schema:familyName Owczarczyk
67 schema:givenName Katarzyna
68 rdf:type schema:Person
69 N169686de79104d219d1a485350e77ca5 schema:affiliation https://www.grid.ac/institutes/grid.425213.3
70 schema:familyName Cook
71 schema:givenName Gary J. R.
72 rdf:type schema:Person
73 N1ad42674259d40aba19f64c0a1222af0 schema:name readcube_id
74 schema:value 0e1676d05d88e1c540eb7f52cabcd8b589acd51962aaf1bfead9ca632d4414e3
75 rdf:type schema:PropertyValue
76 N5aa5c2a7fc694259b5afbc257a3d01f8 schema:affiliation https://www.grid.ac/institutes/grid.13097.3c
77 schema:familyName Siddique
78 schema:givenName Muhammad
79 rdf:type schema:Person
80 N7c30b1243e9a4c1a87b51eab1c644c99 rdf:first N10af1ee403f4481c940776e12ebe932f
81 rdf:rest Ne36270ce0be74455b2a42d28cd0c60fc
82 N7cf2a939872942a5abab3d27e369a82c schema:name nlm_unique_id
83 schema:value 9114774
84 rdf:type schema:PropertyValue
85 N8a9b683087b84166bc50f6b29e01ab07 schema:affiliation https://www.grid.ac/institutes/grid.425213.3
86 schema:familyName Goh
87 schema:givenName Vicky
88 rdf:type schema:Person
89 N9acdb036ec0b497aa25ad2ee95b8b098 rdf:first Nccafeed5a88f47ae965097b2aa83143e
90 rdf:rest N7c30b1243e9a4c1a87b51eab1c644c99
91 N9c8eb436502f486aa058c52614a387f4 schema:name doi
92 schema:value 10.1007/s00330-019-06073-3
93 rdf:type schema:PropertyValue
94 N9e2059de12c549e8a64422d657103c47 rdf:first Nb158f726cb134d97862ca4b2cd6b8020
95 rdf:rest Nac6a32101a064b15bd778b0da10ced20
96 Na49c7288bb19402aad84957a2d578591 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Nac6a32101a064b15bd778b0da10ced20 rdf:first N169686de79104d219d1a485350e77ca5
99 rdf:rest Ncb6fb7a76d0d482eb7e5d1fc42c5a423
100 Nadade73f5ddb430dafe753e4a58f19a1 schema:affiliation Ndd92b882c5eb4d758140ee18921bb984
101 schema:familyName Bassett
102 schema:givenName Paul
103 rdf:type schema:Person
104 Nb0b99512ee57420c8e3ecf90fe8e6bc1 schema:name pubmed_id
105 schema:value 30887205
106 rdf:type schema:PropertyValue
107 Nb158f726cb134d97862ca4b2cd6b8020 schema:affiliation https://www.grid.ac/institutes/grid.430506.4
108 schema:familyName Breen
109 schema:givenName David J.
110 rdf:type schema:Person
111 Nc8e2ce5036e3439aa84d2dbeae4846ad schema:name dimensions_id
112 schema:value pub.1112849947
113 rdf:type schema:PropertyValue
114 Ncb6fb7a76d0d482eb7e5d1fc42c5a423 rdf:first N8a9b683087b84166bc50f6b29e01ab07
115 rdf:rest rdf:nil
116 Nccafeed5a88f47ae965097b2aa83143e schema:affiliation https://www.grid.ac/institutes/grid.425213.3
117 schema:familyName Prezzi
118 schema:givenName Davide
119 rdf:type schema:Person
120 Ndd92b882c5eb4d758140ee18921bb984 schema:name Statsconsultancy Ltd., 40 Longwood Lane, HP7 9EN, Amersham, Bucks, UK
121 rdf:type schema:Organization
122 Ne36270ce0be74455b2a42d28cd0c60fc rdf:first Nadade73f5ddb430dafe753e4a58f19a1
123 rdf:rest Ne673de306bd64dcbb5cbcde06cbeeed2
124 Ne673de306bd64dcbb5cbcde06cbeeed2 rdf:first N5aa5c2a7fc694259b5afbc257a3d01f8
125 rdf:rest N9e2059de12c549e8a64422d657103c47
126 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
127 schema:name Mathematical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
130 schema:name Statistics
131 rdf:type schema:DefinedTerm
132 sg:journal.1289120 schema:issn 0938-7994
133 1432-1084
134 schema:name European Radiology
135 rdf:type schema:Periodical
136 sg:pub.10.1007/s00330-015-4043-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039977346
137 https://doi.org/10.1007/s00330-015-4043-2
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s00330-016-4663-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003341036
140 https://doi.org/10.1007/s00330-016-4663-1
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s00384-017-2835-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085386554
143 https://doi.org/10.1007/s00384-017-2835-3
144 rdf:type schema:CreativeWork
145 sg:pub.10.1038/ncomms5006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009469125
146 https://doi.org/10.1038/ncomms5006
147 rdf:type schema:CreativeWork
148 sg:pub.10.1038/s41598-017-01524-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085208556
149 https://doi.org/10.1038/s41598-017-01524-7
150 rdf:type schema:CreativeWork
151 sg:pub.10.1038/srep23428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009204094
152 https://doi.org/10.1038/srep23428
153 rdf:type schema:CreativeWork
154 sg:pub.10.1038/srep33860 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028821676
155 https://doi.org/10.1038/srep33860
156 rdf:type schema:CreativeWork
157 sg:pub.10.1038/srep34921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032506380
158 https://doi.org/10.1038/srep34921
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/mp.12123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074215033
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.ejrad.2012.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045809942
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.ejrad.2016.08.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022961172
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.jtho.2016.11.2230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009681883
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.radonc.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004503812
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1097/rct.0b013e31824e639e schema:sameAs https://app.dimensions.ai/details/publication/pub.1028908853
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1097/rli.0000000000000116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001262488
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1097/rti.0000000000000164 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040828078
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tbme.2015.2485779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061530028
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/codi.13496 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010575407
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1118/1.4954845 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012565282
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1148/radiol.09090094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011314087
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1148/radiol.12112707 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053507793
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1148/radiol.12120254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042743379
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1148/radiol.14130569 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019115367
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1148/radiol.2015132766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006750918
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1148/radiol.2015150892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018351031
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1148/radiol.2015151169 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023809829
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1148/radiol.2016152110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079265801
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1148/radiol.2016152234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079292066
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1148/radiol.2016160261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1079334888
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1200/jco.2015.65.9128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064204513
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1371/journal.pone.0166550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037687667
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1593/tlo.13865 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043740661
207 rdf:type schema:CreativeWork
208 https://doi.org/10.2214/ajr.09.2397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300081
209 rdf:type schema:CreativeWork
210 https://doi.org/10.2214/ajr.09.2953 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300281
211 rdf:type schema:CreativeWork
212 https://doi.org/10.2214/ajr.10.4288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069300820
213 rdf:type schema:CreativeWork
214 https://doi.org/10.2214/ajr.11.7421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069302000
215 rdf:type schema:CreativeWork
216 https://doi.org/10.3174/ajnr.a5139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084429237
217 rdf:type schema:CreativeWork
218 https://doi.org/10.7554/elife.23421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090852404
219 rdf:type schema:CreativeWork
220 https://www.grid.ac/institutes/grid.13097.3c schema:alternateName King's College London
221 schema:name School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, Lambeth Wing, St Thomas’ Hospital, SE1 7EH, London, UK
222 rdf:type schema:Organization
223 https://www.grid.ac/institutes/grid.425213.3 schema:alternateName St Thomas' Hospital
224 schema:name Department of Clinical Oncology, Guy’s and St Thomas’ NHS Foundation Trust, Lambeth Wing, St Thomas’ Hospital, SE1 7EH, London, UK
225 Department of Radiology, Guy’s and St Thomas’ NHS Foundation Trust, Lambeth Wing, St Thomas’ Hospital, SE1 7EH, London, UK
226 King’s College London & Guy’s and St Thomas’ PET Centre, Lambeth Wing, St Thomas’ Hospital, SE1 7EH, London, UK
227 School of Biomedical Engineering and Imaging Sciences, King’s College London, King’s Health Partners, Lambeth Wing, St Thomas’ Hospital, SE1 7EH, London, UK
228 rdf:type schema:Organization
229 https://www.grid.ac/institutes/grid.430506.4 schema:alternateName University Hospital Southampton NHS Foundation Trust
230 schema:name University Hospital Southampton NHS Foundation Trust, Tremona Road, SO16 6YD, Southampton, UK
231 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...