Exploring quantitative group-wise differentiation of Alzheimer’s disease and behavioural variant frontotemporal dementia using tract-specific microstructural white matter and functional connectivity ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-11

AUTHORS

R. Meijboom, R. M. E. Steketee, L. S. Ham, D. Mantini, E. E. Bron, A. van der Lugt, J. C. van Swieten, M. Smits

ABSTRACT

OBJECTIVES: This study explored group-wise quantitative measures of tract-specific white matter (WM) microstructure and functional default mode network (DMN) connectivity to establish an initial indication of their clinical applicability for early-stage and follow-up differential diagnosis of Alzheimer's disease (AD) and behavioural variant frontotemporal dementia (bvFTD). METHODS: Eleven AD and 12 bvFTD early-stage patients and 18 controls underwent diffusion tensor imaging and resting state functional magnetic resonance imaging at 3 T. All AD and 6 bvFTD patients underwent the same protocol at 1-year follow-up. Functional connectivity measures of DMN and WM tract-specific diffusivity measures were determined for all groups. Exploratory analyses were performed to compare all measures between the three groups at baseline and between patients at follow-up. Additionally, the difference between baseline and follow-up diffusivity measures in AD and bvFTD patients was compared. RESULTS: Functional connectivity of the DMN was not different between groups at baseline and at follow-up. Diffusion abnormalities were observed widely in bvFTD and regionally in the hippocampal cingulum in AD. The extent of the differences between bvFTD and AD was diminished at follow-up, yet abnormalities were still more pronounced in bvFTD. The rate of change was similar in bvFTD and AD. CONCLUSIONS: This study provides a tentative indication that quantitative tract-specific microstructural WM abnormalities, but not quantitative functional connectivity of the DMN, may aid early-stage and follow-up differential diagnosis of bvFTD and AD. Specifically, pronounced microstructural changes in anterior WM tracts may characterise bvFTD, whereas microstructural abnormalities of the hippocampal cingulum may characterise AD. KEY POINTS: • The clinical applicability of quantitative brain imaging measures for early-stage and follow-up differential diagnosis of dementia subtypes was explored using a group-wise approach. • Quantitative tract-specific microstructural white matter abnormalities, but not quantitative functional connectivity of the default mode network, may aid early-stage and follow-up differential diagnosis of behavioural variant frontotemporal dementia and Alzheimer's disease. • Pronounced microstructural white matter (WM) changes in anterior WM tracts characterise behavioural variant frontotemporal dementia, whereas microstructural WM abnormalities of the hippocampal cingulum in the absence of other WM changes characterise Alzheimer's disease. More... »

PAGES

1-12

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s00330-019-06061-7

DOI

http://dx.doi.org/10.1007/s00330-019-06061-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112683178

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30859283


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Edinburgh", 
          "id": "https://www.grid.ac/institutes/grid.4305.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC \u2013 University Medical Centre Rotterdam, Rotterdam, The Netherlands", 
            "Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meijboom", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC \u2013 University Medical Centre Rotterdam, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Steketee", 
        "givenName": "R. M. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC \u2013 University Medical Centre Rotterdam, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ham", 
        "givenName": "L. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ospedale San Camillo", 
          "id": "https://www.grid.ac/institutes/grid.416308.8", 
          "name": [
            "Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium", 
            "Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital Foundation, Lido, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mantini", 
        "givenName": "D.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Biomedical Imaging Group Rotterdam - Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bron", 
        "givenName": "E. E.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC \u2013 University Medical Centre Rotterdam, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van der Lugt", 
        "givenName": "A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Neurology, Erasmus MC \u2013 University Medical Centre Rotterdam, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "van Swieten", 
        "givenName": "J. C.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Erasmus University Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.5645.2", 
          "name": [
            "Department of Radiology and Nuclear Medicine, Erasmus MC \u2013 University Medical Centre Rotterdam, Rotterdam, The Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smits", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00308809", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000355620", 
          "https://doi.org/10.1007/bf00308809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2012.10.084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000633533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnbeh.2014.00393", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001258651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2006/812760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001981707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22522", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003332116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1159/000100973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005383276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.10123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007780347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnn.0000000000000044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009411757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnn.0000000000000044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009411757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1097/wnn.0000000000000044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009411757"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2003.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011402998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2003.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011402998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-142826", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014817178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2011.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015460770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jagp.2015.04.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016206735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbr.2013.05.061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017021160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.clineuro.2013.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017462727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jalz.2011.03.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018411398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.21085", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018572441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ana.24296", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019715491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2014.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019767726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3389/fnhum.2015.00474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020389246"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.21287", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020675331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.51.3.353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022963222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0113081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024076715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.66.2.184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024475863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0082422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025359386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00415-011-6300-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025651944", 
          "https://doi.org/10.1007/s00415-011-6300-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awp071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025662198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awp071", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025662198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3956(75)90026-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027523106"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awr179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030684171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1136/jnnp.72.6.691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030973487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031884538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/nimg.2002.1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031884538"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1001/archneur.64.2.246", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032086092"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awr173", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032114796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033051482"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2014.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033695047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1523/jneurosci.3299-12.2012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033713012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2011.09.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036173681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4061/2011/546871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038360771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-015-9458-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038836593", 
          "https://doi.org/10.1007/s11682-015-9458-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11682-015-9458-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038836593", 
          "https://doi.org/10.1007/s11682-015-9458-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.23081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039281713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jaac.2013.12.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043140877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jagp.2014.09.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047568830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nicl.2013.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047626301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/brain/awq075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048659221"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/hbm.22468", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049057541"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1034/j.1600-0404.2001.2000236.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050283481"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cortex.2012.09.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051123015"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1176/appi.ajp.2009.09050716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063498692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1533317507308781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064038499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1533317507308781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064038499"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000052685.09194.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064344980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000052685.09194.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064344980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000052685.09194.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064344980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/01.wnl.0000052685.09194.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064344980"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181d9edde", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181d9edde", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1212/wnl.0b013e3181d9edde", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064355212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074365509", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074691783", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-131481", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078802919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3233/jad-131709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1078829084"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-11", 
    "datePublishedReg": "2019-03-11", 
    "description": "OBJECTIVES: This study explored group-wise quantitative measures of tract-specific white matter (WM) microstructure and functional default mode network (DMN) connectivity to establish an initial indication of their clinical applicability for early-stage and follow-up differential diagnosis of Alzheimer's disease (AD) and behavioural variant frontotemporal dementia (bvFTD).\nMETHODS: Eleven AD and 12 bvFTD early-stage patients and 18 controls underwent diffusion tensor imaging and resting state functional magnetic resonance imaging at 3\u00a0T. All AD and 6 bvFTD patients underwent the same protocol at 1-year follow-up. Functional connectivity measures of DMN and WM tract-specific diffusivity measures were determined for all groups. Exploratory analyses were performed to compare all measures between the three groups at baseline and between patients at follow-up. Additionally, the difference between baseline and follow-up diffusivity measures in AD and bvFTD patients was compared.\nRESULTS: Functional connectivity of the DMN was not different between groups at baseline and at follow-up. Diffusion abnormalities were observed widely in bvFTD and regionally in the hippocampal cingulum in AD. The extent of the differences between bvFTD and AD was diminished at follow-up, yet abnormalities were still more pronounced in bvFTD. The rate of change was similar in bvFTD and AD.\nCONCLUSIONS: This study provides a tentative indication that quantitative tract-specific microstructural WM abnormalities, but not quantitative functional connectivity of the DMN, may aid early-stage and follow-up differential diagnosis of bvFTD and AD. Specifically, pronounced microstructural changes in anterior WM tracts may characterise bvFTD, whereas microstructural abnormalities of the hippocampal cingulum may characterise AD.\nKEY POINTS: \u2022 The clinical applicability of quantitative brain imaging measures for early-stage and follow-up differential diagnosis of dementia subtypes was explored using a group-wise approach. \u2022 Quantitative tract-specific microstructural white matter abnormalities, but not quantitative functional connectivity of the default mode network, may aid early-stage and follow-up differential diagnosis of behavioural variant frontotemporal dementia and Alzheimer's disease. \u2022 Pronounced microstructural white matter (WM) changes in anterior WM tracts characterise behavioural variant frontotemporal dementia, whereas microstructural WM abnormalities of the hippocampal cingulum in the absence of other WM changes characterise Alzheimer's disease.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s00330-019-06061-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1289120", 
        "issn": [
          "0938-7994", 
          "1432-1084"
        ], 
        "name": "European Radiology", 
        "type": "Periodical"
      }
    ], 
    "name": "Exploring quantitative group-wise differentiation of Alzheimer\u2019s disease and behavioural variant frontotemporal dementia using tract-specific microstructural white matter and functional connectivity measures at multiple time points", 
    "pagination": "1-12", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5ee71940518f579c3df49a588e5564cb6d334d66e297ac551eb0a1133638e1c0"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30859283"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9114774"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s00330-019-06061-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112683178"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s00330-019-06061-7", 
      "https://app.dimensions.ai/details/publication/pub.1112683178"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99299_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs00330-019-06061-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06061-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06061-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06061-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s00330-019-06061-7'


 

This table displays all metadata directly associated to this object as RDF triples.

277 TRIPLES      21 PREDICATES      80 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s00330-019-06061-7 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author N965a27e7383944d598e6d43728a3115b
4 schema:citation sg:pub.10.1007/bf00308809
5 sg:pub.10.1007/s00415-011-6300-x
6 sg:pub.10.1007/s11682-015-9458-5
7 https://app.dimensions.ai/details/publication/pub.1074365509
8 https://app.dimensions.ai/details/publication/pub.1074691783
9 https://doi.org/10.1001/archneur.64.2.246
10 https://doi.org/10.1002/ana.24296
11 https://doi.org/10.1002/hbm.10123
12 https://doi.org/10.1002/hbm.21085
13 https://doi.org/10.1002/hbm.21287
14 https://doi.org/10.1002/hbm.22468
15 https://doi.org/10.1002/hbm.22522
16 https://doi.org/10.1002/hbm.22832
17 https://doi.org/10.1002/hbm.23081
18 https://doi.org/10.1006/nimg.2002.1267
19 https://doi.org/10.1016/0022-3956(75)90026-6
20 https://doi.org/10.1016/j.bbr.2013.05.061
21 https://doi.org/10.1016/j.clineuro.2013.09.031
22 https://doi.org/10.1016/j.cortex.2012.09.017
23 https://doi.org/10.1016/j.cortex.2014.01.002
24 https://doi.org/10.1016/j.jaac.2013.12.007
25 https://doi.org/10.1016/j.jagp.2014.09.008
26 https://doi.org/10.1016/j.jagp.2015.04.007
27 https://doi.org/10.1016/j.jalz.2011.03.003
28 https://doi.org/10.1016/j.jalz.2011.03.005
29 https://doi.org/10.1016/j.neuroimage.2003.07.005
30 https://doi.org/10.1016/j.neuroimage.2011.09.015
31 https://doi.org/10.1016/j.neuroimage.2012.10.084
32 https://doi.org/10.1016/j.nicl.2013.06.005
33 https://doi.org/10.1016/j.nicl.2014.01.008
34 https://doi.org/10.1034/j.1600-0404.2001.2000236.x
35 https://doi.org/10.1093/brain/awp071
36 https://doi.org/10.1093/brain/awq075
37 https://doi.org/10.1093/brain/awr173
38 https://doi.org/10.1093/brain/awr179
39 https://doi.org/10.1097/wnn.0000000000000044
40 https://doi.org/10.1136/jnnp.51.3.353
41 https://doi.org/10.1136/jnnp.66.2.184
42 https://doi.org/10.1136/jnnp.72.6.691
43 https://doi.org/10.1155/2006/812760
44 https://doi.org/10.1159/000100973
45 https://doi.org/10.1176/appi.ajp.2009.09050716
46 https://doi.org/10.1177/1533317507308781
47 https://doi.org/10.1212/01.wnl.0000052685.09194.39
48 https://doi.org/10.1212/wnl.0b013e3181d9edde
49 https://doi.org/10.1371/journal.pone.0082422
50 https://doi.org/10.1371/journal.pone.0113081
51 https://doi.org/10.1523/jneurosci.3299-12.2012
52 https://doi.org/10.3233/jad-131481
53 https://doi.org/10.3233/jad-131709
54 https://doi.org/10.3233/jad-142826
55 https://doi.org/10.3389/fnbeh.2014.00393
56 https://doi.org/10.3389/fnhum.2015.00474
57 https://doi.org/10.4061/2011/546871
58 schema:datePublished 2019-03-11
59 schema:datePublishedReg 2019-03-11
60 schema:description OBJECTIVES: This study explored group-wise quantitative measures of tract-specific white matter (WM) microstructure and functional default mode network (DMN) connectivity to establish an initial indication of their clinical applicability for early-stage and follow-up differential diagnosis of Alzheimer's disease (AD) and behavioural variant frontotemporal dementia (bvFTD). METHODS: Eleven AD and 12 bvFTD early-stage patients and 18 controls underwent diffusion tensor imaging and resting state functional magnetic resonance imaging at 3 T. All AD and 6 bvFTD patients underwent the same protocol at 1-year follow-up. Functional connectivity measures of DMN and WM tract-specific diffusivity measures were determined for all groups. Exploratory analyses were performed to compare all measures between the three groups at baseline and between patients at follow-up. Additionally, the difference between baseline and follow-up diffusivity measures in AD and bvFTD patients was compared. RESULTS: Functional connectivity of the DMN was not different between groups at baseline and at follow-up. Diffusion abnormalities were observed widely in bvFTD and regionally in the hippocampal cingulum in AD. The extent of the differences between bvFTD and AD was diminished at follow-up, yet abnormalities were still more pronounced in bvFTD. The rate of change was similar in bvFTD and AD. CONCLUSIONS: This study provides a tentative indication that quantitative tract-specific microstructural WM abnormalities, but not quantitative functional connectivity of the DMN, may aid early-stage and follow-up differential diagnosis of bvFTD and AD. Specifically, pronounced microstructural changes in anterior WM tracts may characterise bvFTD, whereas microstructural abnormalities of the hippocampal cingulum may characterise AD. KEY POINTS: • The clinical applicability of quantitative brain imaging measures for early-stage and follow-up differential diagnosis of dementia subtypes was explored using a group-wise approach. • Quantitative tract-specific microstructural white matter abnormalities, but not quantitative functional connectivity of the default mode network, may aid early-stage and follow-up differential diagnosis of behavioural variant frontotemporal dementia and Alzheimer's disease. • Pronounced microstructural white matter (WM) changes in anterior WM tracts characterise behavioural variant frontotemporal dementia, whereas microstructural WM abnormalities of the hippocampal cingulum in the absence of other WM changes characterise Alzheimer's disease.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf sg:journal.1289120
65 schema:name Exploring quantitative group-wise differentiation of Alzheimer’s disease and behavioural variant frontotemporal dementia using tract-specific microstructural white matter and functional connectivity measures at multiple time points
66 schema:pagination 1-12
67 schema:productId N2442987072d04696af5a6ddfcc5d4c82
68 N8bcdb1dba31a4fc097cc82a4d82dfaef
69 N8dd6da07003a4ccfa5c80329aa7c3a89
70 N975986597ddf4eae86e218b3b08b08dd
71 Nc2006f76d1174a9bbe503d971fb6e7e5
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112683178
73 https://doi.org/10.1007/s00330-019-06061-7
74 schema:sdDatePublished 2019-04-11T11:30
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N70419f3623d0456d9a7461081ebae859
77 schema:url https://link.springer.com/10.1007%2Fs00330-019-06061-7
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N20404a1f22c64eb4a07f3684b14a29f7 rdf:first N3994be50238b44ce911f3734ebf19137
82 rdf:rest N37cad383f3af4b3485a1b24c3d76dc19
83 N2442987072d04696af5a6ddfcc5d4c82 schema:name pubmed_id
84 schema:value 30859283
85 rdf:type schema:PropertyValue
86 N2ccfecb994064e33a48784f0133b4d87 rdf:first N7b79437a116247299a828f9b65c9a092
87 rdf:rest rdf:nil
88 N32fce2b0d049482fb01be23417be4c1c schema:affiliation https://www.grid.ac/institutes/grid.5645.2
89 schema:familyName Ham
90 schema:givenName L. S.
91 rdf:type schema:Person
92 N37cad383f3af4b3485a1b24c3d76dc19 rdf:first Nba09f7b671a84152b0beb0f157dee6da
93 rdf:rest N2ccfecb994064e33a48784f0133b4d87
94 N3994be50238b44ce911f3734ebf19137 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
95 schema:familyName van der Lugt
96 schema:givenName A.
97 rdf:type schema:Person
98 N53fb989b66c64788b9de9a8c5b421aaf rdf:first N8007dcf796574f22a82cd63364be81cb
99 rdf:rest N6e43766463d9461ead53236b57347221
100 N6e43766463d9461ead53236b57347221 rdf:first Nb8c6e4ecebee4e8eae571dac63b91ab0
101 rdf:rest N20404a1f22c64eb4a07f3684b14a29f7
102 N70419f3623d0456d9a7461081ebae859 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N7b79437a116247299a828f9b65c9a092 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
105 schema:familyName Smits
106 schema:givenName M.
107 rdf:type schema:Person
108 N7c72951587214ce2a767a5023de67e67 schema:affiliation https://www.grid.ac/institutes/grid.4305.2
109 schema:familyName Meijboom
110 schema:givenName R.
111 rdf:type schema:Person
112 N8007dcf796574f22a82cd63364be81cb schema:affiliation https://www.grid.ac/institutes/grid.416308.8
113 schema:familyName Mantini
114 schema:givenName D.
115 rdf:type schema:Person
116 N8bcdb1dba31a4fc097cc82a4d82dfaef schema:name doi
117 schema:value 10.1007/s00330-019-06061-7
118 rdf:type schema:PropertyValue
119 N8dd6da07003a4ccfa5c80329aa7c3a89 schema:name dimensions_id
120 schema:value pub.1112683178
121 rdf:type schema:PropertyValue
122 N965a27e7383944d598e6d43728a3115b rdf:first N7c72951587214ce2a767a5023de67e67
123 rdf:rest Nc129ba2cc8e946a7b7a1e8189f589b7d
124 N975986597ddf4eae86e218b3b08b08dd schema:name readcube_id
125 schema:value 5ee71940518f579c3df49a588e5564cb6d334d66e297ac551eb0a1133638e1c0
126 rdf:type schema:PropertyValue
127 Nb8c6e4ecebee4e8eae571dac63b91ab0 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
128 schema:familyName Bron
129 schema:givenName E. E.
130 rdf:type schema:Person
131 Nba09f7b671a84152b0beb0f157dee6da schema:affiliation https://www.grid.ac/institutes/grid.5645.2
132 schema:familyName van Swieten
133 schema:givenName J. C.
134 rdf:type schema:Person
135 Nc129ba2cc8e946a7b7a1e8189f589b7d rdf:first Nfaa4b48a20504e5798f0e352561fb081
136 rdf:rest Nf89925355cd1482caabe1adf5359ab9b
137 Nc2006f76d1174a9bbe503d971fb6e7e5 schema:name nlm_unique_id
138 schema:value 9114774
139 rdf:type schema:PropertyValue
140 Nf89925355cd1482caabe1adf5359ab9b rdf:first N32fce2b0d049482fb01be23417be4c1c
141 rdf:rest N53fb989b66c64788b9de9a8c5b421aaf
142 Nfaa4b48a20504e5798f0e352561fb081 schema:affiliation https://www.grid.ac/institutes/grid.5645.2
143 schema:familyName Steketee
144 schema:givenName R. M. E.
145 rdf:type schema:Person
146 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
147 schema:name Medical and Health Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
150 schema:name Neurosciences
151 rdf:type schema:DefinedTerm
152 sg:journal.1289120 schema:issn 0938-7994
153 1432-1084
154 schema:name European Radiology
155 rdf:type schema:Periodical
156 sg:pub.10.1007/bf00308809 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000355620
157 https://doi.org/10.1007/bf00308809
158 rdf:type schema:CreativeWork
159 sg:pub.10.1007/s00415-011-6300-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025651944
160 https://doi.org/10.1007/s00415-011-6300-x
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/s11682-015-9458-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038836593
163 https://doi.org/10.1007/s11682-015-9458-5
164 rdf:type schema:CreativeWork
165 https://app.dimensions.ai/details/publication/pub.1074365509 schema:CreativeWork
166 https://app.dimensions.ai/details/publication/pub.1074691783 schema:CreativeWork
167 https://doi.org/10.1001/archneur.64.2.246 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032086092
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/ana.24296 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019715491
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/hbm.10123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007780347
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/hbm.21085 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018572441
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/hbm.21287 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020675331
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/hbm.22468 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049057541
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/hbm.22522 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003332116
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/hbm.22832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033051482
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1002/hbm.23081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039281713
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/nimg.2002.1267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031884538
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0022-3956(75)90026-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027523106
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/j.bbr.2013.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017021160
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/j.clineuro.2013.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017462727
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/j.cortex.2012.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051123015
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1016/j.cortex.2014.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033695047
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1016/j.jaac.2013.12.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043140877
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1016/j.jagp.2014.09.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047568830
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1016/j.jagp.2015.04.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016206735
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1016/j.jalz.2011.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018411398
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1016/j.jalz.2011.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015460770
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1016/j.neuroimage.2003.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011402998
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1016/j.neuroimage.2011.09.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036173681
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1016/j.neuroimage.2012.10.084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000633533
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1016/j.nicl.2013.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047626301
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1016/j.nicl.2014.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019767726
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1034/j.1600-0404.2001.2000236.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1050283481
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/brain/awp071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025662198
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1093/brain/awq075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048659221
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1093/brain/awr173 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032114796
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1093/brain/awr179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030684171
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1097/wnn.0000000000000044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009411757
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1136/jnnp.51.3.353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022963222
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1136/jnnp.66.2.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024475863
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1136/jnnp.72.6.691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030973487
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1155/2006/812760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001981707
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1159/000100973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005383276
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1176/appi.ajp.2009.09050716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063498692
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1177/1533317507308781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064038499
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1212/01.wnl.0000052685.09194.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064344980
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1212/wnl.0b013e3181d9edde schema:sameAs https://app.dimensions.ai/details/publication/pub.1064355212
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1371/journal.pone.0082422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025359386
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1371/journal.pone.0113081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024076715
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1523/jneurosci.3299-12.2012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033713012
252 rdf:type schema:CreativeWork
253 https://doi.org/10.3233/jad-131481 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078802919
254 rdf:type schema:CreativeWork
255 https://doi.org/10.3233/jad-131709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1078829084
256 rdf:type schema:CreativeWork
257 https://doi.org/10.3233/jad-142826 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014817178
258 rdf:type schema:CreativeWork
259 https://doi.org/10.3389/fnbeh.2014.00393 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001258651
260 rdf:type schema:CreativeWork
261 https://doi.org/10.3389/fnhum.2015.00474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020389246
262 rdf:type schema:CreativeWork
263 https://doi.org/10.4061/2011/546871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038360771
264 rdf:type schema:CreativeWork
265 https://www.grid.ac/institutes/grid.416308.8 schema:alternateName Ospedale San Camillo
266 schema:name Functional Neuroimaging Laboratory, IRCCS San Camillo Hospital Foundation, Lido, Italy
267 Research Center for Motor Control and Neuroplasticity, KU Leuven, Leuven, Belgium
268 rdf:type schema:Organization
269 https://www.grid.ac/institutes/grid.4305.2 schema:alternateName University of Edinburgh
270 schema:name Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
271 Department of Radiology and Nuclear Medicine, Erasmus MC – University Medical Centre Rotterdam, Rotterdam, The Netherlands
272 rdf:type schema:Organization
273 https://www.grid.ac/institutes/grid.5645.2 schema:alternateName Erasmus University Medical Center
274 schema:name Biomedical Imaging Group Rotterdam - Departments of Medical Informatics and Radiology, Erasmus MC - University Medical Centre Rotterdam, Rotterdam, The Netherlands
275 Department of Neurology, Erasmus MC – University Medical Centre Rotterdam, Rotterdam, The Netherlands
276 Department of Radiology and Nuclear Medicine, Erasmus MC – University Medical Centre Rotterdam, Rotterdam, The Netherlands
277 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...